湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第1頁
湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第2頁
湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第3頁
湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第4頁
湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省鄂州市、黃岡市2025屆高一數(shù)學第二學期期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若是2與8的等比中項,則等于()A. B. C. D.322.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.43.設(shè),,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于24.函數(shù)f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.325.某班20名學生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學生的考試成績,則輸出的結(jié)果為()A.11 B.10 C.9 D.86.函數(shù)的部分圖象如圖,則()()A.0 B. C. D.67.利用斜二測畫法得到的:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③相等的角在直觀圖中仍然相等;④正方形的直觀圖是正方形.以上結(jié)論正確的是()A.①② B.① C.③④ D.①②③④8.從A,B,C三個同學中選2名代表,則A被選中的概率為()A. B. C. D.9.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B. C. D.10.某中學舉行高一廣播體操比賽,共10個隊參賽,為了確定出場順序,學校制作了10個出場序號簽供大家抽簽,高一(l)班先抽,則他們抽到的出場序號小于4的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)三棱錐滿足,,則該三棱錐的體積的最大值為____________.12.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說法:①當吋,不等式的解集②當吋,不等式的解集為③當>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說法正確的序號是_______.13.已知一組數(shù)據(jù),,,的方差為,則這組數(shù)據(jù),,,的方差為______.14.已知向量,,若與共線,則實數(shù)________.15.設(shè)數(shù)列是首項為0的遞增數(shù)列,函數(shù)滿足:對于任意的實數(shù),總有兩個不同的根,則的通項公式是________.16.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:支持保留不支持歲以下歲以上(含歲)(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;(2)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下:,,,,,,,,,,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.18.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點是的中點.(1)求證:;(2)求證:(3)求三棱錐的體積.19.已知數(shù)列中,,點在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項;(3)設(shè)、分別為數(shù)列、的前項和是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求在區(qū)間上的最大值和最小值.21.已知函數(shù),其中.解關(guān)于x的不等式;求a的取值范圍,使在區(qū)間上是單調(diào)減函數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用等比中項性質(zhì)列出等式,解出即可。【詳解】由題意知,,∴.故選B【點睛】本題考查等比中項,屬于基礎(chǔ)題。2、A【解析】

等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.3、D【解析】

由題意得,當且僅當時,等號成立,所以至少有一個不小于,故選D.4、B【解析】

由題得g(x構(gòu)造h(x)=g(x)-f(x)=x2-2x+2∈【詳解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值為22.故選:B.【點睛】本題考查函數(shù)的最值的求法,注意運用轉(zhuǎn)化思想,以及二次函數(shù)在閉區(qū)間上的最值求法,考查運算能力,屬于中檔題.5、A【解析】

首先判斷程序框圖的功能,然后從莖葉圖數(shù)出相應(yīng)人數(shù),從而得到答案.【詳解】由算法流程圖可知,其統(tǒng)計的是成績大于等于120的人數(shù),所以由莖葉圖知:成績大于等于120的人數(shù)為11,故選A.【點睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學生的分析能力及計算能力,難度不大.6、D【解析】

先利用正切函數(shù)求出A,B兩點的坐標,進而求出與的坐標,再代入平面向量數(shù)量積的運算公式即可求解.【詳解】因為y=tan(x)=0?xkπ?x=4k+2,由圖得x=2;故A(2,0)由y=tan(x)=1?xk?x=4k+3,由圖得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故選D.【點睛】本題主要考查平面向量數(shù)量積的坐標運算,考查了利用正切函數(shù)值求角的運算,解決本題的關(guān)鍵在于求出A,B兩點的坐標,屬于基礎(chǔ)題.7、A【解析】

由直觀圖的畫法和相關(guān)性質(zhì),逐一進行判斷即可.【詳解】斜二側(cè)畫法會使直觀圖中的角度不同,也會使得沿垂直于水平線方向的長度與原圖不同,而多邊形的邊數(shù)不會改變,同時平行直線之間的位置關(guān)系依舊保持平行,故:①②正確,③和④不對,因為角度會發(fā)生改變.故選:A.【點睛】本題考查斜二側(cè)畫法的相關(guān)性質(zhì),注意角度是發(fā)生改變的,這是易錯點.8、D【解析】

先求出基本事件總數(shù),被選中包含的基本事件個數(shù),由此能求出被選中的概率.【詳解】從,,三個同學中選2名代表,基本事件總數(shù)為:,共個,被選中包含的基本事件為:,共2個,被選中的概率.故選:D.【點睛】本題考查概率的求法,考查列舉法和運算求解能力,是基礎(chǔ)題.9、C【解析】

將平移到一起,根據(jù)等邊三角形的性質(zhì)判斷出兩條異面直線所成角的大小.【詳解】連接如下圖所示,由于分別是棱和棱的中點,故,根據(jù)正方體的性質(zhì)可知,所以是異面直線所成的角,而三角形為等邊三角形,故.故選C.【點睛】本小題主要考查空間異面直線所成角的大小的求法,考查空間想象能力,屬于基礎(chǔ)題.10、D【解析】

古典概率公式得到答案.【詳解】抽到的出場序號小于4的概率:故答案選D【點睛】本題考查了概率的計算,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

取中點,連,可證平面,,要使最大,只需求最大值,即可求解.【詳解】取中點,連,所以,,,平面,平面,設(shè)中邊上的高為,,當且僅當時,取等號.故答案為:.【點睛】本題考查錐體的體積計算,考查線面垂直的判定,屬于中檔題.12、③【解析】

利用等比數(shù)列的通項公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當或時解為,當或時,解為,時,解為;若,則,當或時解為,當或時,解為,時,不等式無解.對照A、B、C、D,只有C正確.故選C.【點睛】本題考查等比數(shù)列的通項公式,考查解一元二次不等式,難點是解一元二次不等式,注意分類討論,本題中需對二次項系數(shù)分正負,然后以要對兩根分大小,另外還有一個是相應(yīng)的一元二次方程是否有實數(shù)解分類(本題已經(jīng)有兩解,不需要這個分類).13、【解析】

利用方差的性質(zhì)直接求解.【詳解】一組數(shù)據(jù),,,的方差為5,這組數(shù)據(jù),,,的方差為:.【點睛】本題考查方差的性質(zhì)應(yīng)用。若的方差為,則的方差為。14、【解析】

根據(jù)平面向量的共線定理與坐標表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點睛】本題考查了平面向量的共線定理與坐標表示的應(yīng)用問題,是基礎(chǔ)題.15、【解析】

利用三角函數(shù)的圖象與性質(zhì)、誘導公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項和公式,即可求解.【詳解】由題意,因為,當時,,又因為對任意的實數(shù),總有兩個不同的根,所以,所以,又,對任意的實數(shù),總有兩個不同的根,所以,又,對任意的實數(shù),總有兩個不同的根,所以,由此可得,所以,所以.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及誘導公式,數(shù)列的遞推關(guān)系式和“累加”方法等知識的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.16、【解析】

利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)120;(2).【解析】

(1)參與調(diào)查的總?cè)藬?shù)為20000,其中從持“不支持”態(tài)度的人數(shù)5000中抽取了30人,由此能求出n.(2)總體的平均數(shù)為9,與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,由此能求出任取1個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【詳解】(1)參與調(diào)查的總?cè)藬?shù)為8000+4000+2000+1000+2000+3000=20000,其中不支持態(tài)度的人數(shù)2000+3000=5000中抽取了30人,所以n=.(2)總體的平均數(shù)與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,所以任取一個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【點睛】本題主要考查了樣本容量的求法,分層抽樣,用列舉法求古典概型的概率,屬于中檔題.18、(1)見解析;(2)見解析;(3)8.【解析】試題分析:(1)由勾股定理得,由面得到,從而得到面,故;(2)連接交于點,則為的中位線,得到∥,從而得到∥面;(3)過作垂足為,面,面積法求,求出三角形的面積,代入體積公式進行運算.試題解析:(1)證明:在中,由勾股定理得為直角三角形,即.又面,,,面,.(2)證明:設(shè)交于點,則為的中點,連接,則為的中位線,則在中,∥,又面,則∥面.(3)在中過作垂足為,由面⊥面知,面,.而,,.考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積.19、(1)證明過程見詳解;(2);(3)存在實數(shù),使得數(shù)列為等差數(shù)列.【解析】

(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項;(3)把數(shù)列an}、{bn}通項公式代入an+2bn,進而得到Sn+2T的表達式代入Tn,進而推斷當且僅當λ=2時,數(shù)列是等差數(shù)列.【詳解】(1)因為點在直線上,所以,因此由得所以數(shù)列是以為公比的等比數(shù)列;(2)因為,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使數(shù)列是等差數(shù)列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴當且僅當λ=2時,數(shù)列是等差數(shù)列.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記等比數(shù)列的定義,等比數(shù)列的通項公式,以及等差數(shù)列與等比數(shù)列的求和公式即可,屬于??碱}型.20、(1);(2),.【解析】

(1)利用二倍角余弦、正弦公式以及輔助角公式將函數(shù)的解析式化簡,然后利用周期公式可計算出函數(shù)的最小正周期;(2)由計算出的取值范圍,然后利用正弦函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),因此,函數(shù)的最小正周期為;(2),,當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.【點睛】本題考查三角函數(shù)周期和最值的計算,同時也考查了利用二倍角公式以及輔

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論