版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省高中聯(lián)考高一下數(shù)學期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值為()A.1 B.2 C.3 D.52.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“校”、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“?!?、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結果,經隨機模擬產生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.3.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結果是()A.7 B.21 C.35 D.494.已知x,y為正實數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy5.已知函數(shù),下列結論不正確的是(
)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內單調遞減C.函數(shù)的圖象關于軸對稱D.把函數(shù)的圖象向左平移個單位長度可得到的圖象6.在中,角、、所對的邊分別為、、,如果,則的形狀是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形7.在平面直角坐標系中,已知四邊形是平行四邊形,,,則()A. B. C. D.8.若實數(shù),滿足不等式組則的最大值為()A. B.2 C.5 D.79.已知,則值為A. B. C. D.10.直線的傾斜角是()A.30° B.60° C.120° D.135°二、填空題:本大題共6小題,每小題5分,共30分。11.己知中,角所対的辻分別是.若,=,,則=______.12.函數(shù),的遞增區(qū)間為______.13.過點(2,-3)且在兩坐標軸上的截距互為相反數(shù)的直線方程為_________________.14.已知等比數(shù)列的前項和為,,則的值是__________.15.在數(shù)列中,按此規(guī)律,是該數(shù)列的第______項16.用列舉法表示集合__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在邊長為2菱形ABCD中,,且對角線AC與BD交點為O.沿BD將折起,使點A到達點的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.18.“精準扶貧”的重要思想最早在2013年11月提出,到湘西考察時首次作出“實事求是,因地制宜,分類指導,精準扶貧”的重要指導。2015年在貴州調研時強調要科學謀劃好“十三五”時期精準扶貧開發(fā)工作,確保貧困人口到2020年如期脫貧。某農科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植A、B兩種藥材,可以通過種植這兩種藥材脫貧。通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材A的畝產量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:編號12345年份20152016201720182019單價(元/公斤)1820232529藥材B的收購價格始終為20元/公斤,其畝產量的頻率分布直方圖如下:(1)若藥材A的單價(單位:元/公斤)與年份編號具有線性相關關系,請求出關于的回歸直線方程,并估計2020年藥材A的單價;(2)用上述頻率分布直方圖估計藥材B的平均畝產量,若不考慮其他因素,試判斷2020年該村應種植藥材A還是藥材B?并說明理由.附:,.19.如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.(Ⅰ)求證:平面;(Ⅱ)求證:平面;(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.20.已知圓經過兩點,且圓心在軸上.(1)求圓的方程;(2)若直線,且截軸所得縱截距為5,求直線截圓所得線段的長度.21.解關于x的不等式
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由可求得所處的范圍,進而得到函數(shù)最大值.【詳解】的最大值為故選:【點睛】本題考查函數(shù)最值的求解,關鍵是明確余弦型函數(shù)的值域,屬于基礎題.2、B【解析】
隨機模擬產生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【詳解】隨機模擬產生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【點睛】本題考查概率的求法,考查列舉法等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.3、B【解析】
模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎題.4、D【解析】因為as+t=as?at,lg(xy)=lgx+lgy(x,y為正實數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個公式,故選D.5、D【解析】
利用余弦函數(shù)的性質對A、B、C三個選項逐一判斷,再利用平移“左加右減”及誘導公式得出,進而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項A正確;函數(shù)在上為減函數(shù),故選項B正確;函數(shù)為偶函數(shù),關于軸對稱,故選項C正確把函數(shù)的圖象向左平移個單位長度可得,所以選項D不正確.故答案為D【點睛】本題主要考查了余弦函數(shù)的性質,以及誘導公式的應用,著重考查了推理與運算能力,屬于基礎題.6、C【解析】
結合正弦定理和三角恒等變換及三角函數(shù)的誘導公式化簡即可求得結果【詳解】利用正弦定理得,化簡得,即,則或,解得或故的形狀是等腰三角形或直角三角形故選:C【點睛】本題考查根據(jù)正弦定理和三角恒等變化,三角函數(shù)的誘導公式化簡求值,屬于中檔題7、D【解析】因為四邊形是平行四邊形,所以,所以,故選D.考點:1、平面向量的加法運算;2、平面向量數(shù)量積的坐標運算.8、C【解析】
利用線性規(guī)劃數(shù)形結合分析解答.【詳解】由約束條件,作出可行域如圖:由得A(3,-2).由,化為,由圖可知,當直線過點時,直線在軸上的截距最小,有最大值為5.故選C.【點睛】本題主要考查利用線性規(guī)劃求最值,意在考查學生對該知識的理解掌握水平,屬于基礎題.9、B【解析】
利用三角函數(shù)的誘導公式,得到,即可求解.【詳解】由題意,可得,故選B.【點睛】本題主要考查了三角函數(shù)的誘導公式的化簡、求值,其中解答中熟練應用三角函數(shù)的誘導公式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】
根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關系,熟記常見特殊角的三角函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
應用余弦定理得出,再結合已知等式配出即可.【詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【點睛】本題考查余弦定理,掌握余弦定理是解題關鍵,解題時不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計算.12、[0,](開區(qū)間也行)【解析】
根據(jù)正弦函數(shù)的單調遞增區(qū)間,以及題中條件,即可求出結果.【詳解】由得:,又,所以函數(shù),的遞增區(qū)間為.故答案為【點睛】本題主要考查正弦型函數(shù)的單調區(qū)間,熟記正弦函數(shù)的單調區(qū)間即可,屬于??碱}型.13、【解析】分析:分類討論截距為0和截距不為零兩種情況求解直線方程即可.詳解:當截距為0時,直線的方程為,滿足題意;當截距不為0時,設直線的方程為,把點代入直線方程可得,此時直線方程為.故答案為.點睛:求解直線方程時應該注意以下問題:一是根據(jù)斜率求傾斜角,要注意傾斜角的范圍;二是求直線方程時,若不能斷定直線是否具有斜率時,應對斜率存在與不存在加以討論;三是在用截距式時,應先判斷截距是否為0,若不確定,則需分類討論.14、1【解析】
根據(jù)等比數(shù)列前項和公式,由可得,通過化簡可得,代入的值即可得結果.【詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【點睛】本題主要考查等比數(shù)列的前項和公式,本題解題的關鍵是看出數(shù)列的公比的值,屬于基礎題.15、【解析】
分別求出,,,結果構成等比數(shù)列,進而推斷數(shù)列是首相為2,公比為2的等比數(shù)列,進而求得數(shù)列的通項公式,再由求得答案.【詳解】,,,依此類推可得,,,即.,解得.故答案為:7.【點睛】本題考查利用數(shù)列的遞推關系求數(shù)列的通項公式,求解的關鍵在于推斷是等比數(shù)列,再用累加法求得數(shù)列的通項公式,考查邏輯推理能力和運算求解能力.16、【解析】
先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因為,所以,又因為,所以,此時或,則可得集合:.【點睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)證明與即可.(2)法一:證明平面,再過點做垂足為,證明為三棱錐的高再求解即可.法二:通過進行轉化求解即可.法三:通過進行轉化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點O.以BD為折痕,將折起,使點A到達點的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點,則且,因為且,,所以平面,過點做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二):因為,,取AC中點E,,,,又(法三)因為且,,所以平面,,所以.【點睛】本題主要考查了線面垂直的證明與錐體體積的求解方法等.需要根據(jù)題意找到合適的底面與高,或者利用割補法求解體積.屬于中檔題.18、(1),當時,;(2)應該種植A種藥材【解析】
(1)首先計算和,將數(shù)據(jù)代入公式得到回歸方程,再取得到2020年單價.(2)計算B藥材的平均產量,得到B藥材的總產值,與(1)中A藥材作比較,選出高的一個.【詳解】解:(1),,當時,(2)利用概率和為1得到430—450頻率/組距為0.005B藥材的畝產量的平均值為:故A藥材產值為B藥材產值為應該種植A種藥材【點睛】本題考查了回歸方程及平均值的計算,意在考察學生的計算能力.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析【解析】
(Ⅰ)轉化為證明;(Ⅱ)轉化為證明,;(Ⅲ)根據(jù)線面平行的性質定理.【詳解】(Ⅰ)因為四邊形為正方形,所以,由于平面,平面,所以平面.(Ⅱ)因為四邊形為正方形,所以.平面平面,平面平面,所以平面.所以.取中點,連接.由,,,可得四邊形為正方形.所以.所以.所以.因為,所以平面.(Ⅲ)存在,當為的中點時,平面,此時.證明如下:連接交于點,由于四邊形為正方形,所以是的中點,同時也是的中點.因為,又四邊形為正方形,所以,連接,所以四邊形為平行四邊形.所以.又因為平面,平面,所以平面.【點睛】本題考查空間線面的關系.線面關系的證明要緊扣判定定理,轉化為線線關系的證明.20、(1)(2)【解析】
(1)設圓心的坐標為,利用求出的值,可確定圓心坐標,并計算出半徑長,然后利用標準方程可寫出圓的方程;(2)由,得出直線的斜率與直線的斜率相等,可得出直線的斜率,再由截軸所得縱截距為,可得出直線的方程,計算圓心到直線的距離,則.【詳解】(1)設圓心,則,則所以圓方程:.(2)由于,且,則,則圓心到直線的距離為:.由于,【點睛】本題考查圓的方程的求解以及直線截圓所得弦長的計算,再解直線與圓相關的問題時,可充分利用圓的幾何性質,利用幾何法來處理,問題的核心在于計算圓心到直線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《知識產權培訓》課件
- 《種釀酒白葡萄》課件
- 《診斷原則》課件
- 單位管理制度集合大全【人員管理】
- 單位管理制度合并選集員工管理篇
- 單位管理制度分享合集【員工管理篇】十篇
- 單位管理制度分享大合集【員工管理篇】
- 單位管理制度范例匯編【員工管理】十篇
- 七年級英語SpringFestival課件
- 單位管理制度呈現(xiàn)大全【員工管理篇】
- 指揮中心 施工方案
- 金融模擬交易實驗報告
- 國家開放大學電大本科《古代小說戲曲專題》2023期末試題及答案(試卷號:1340)
- 加德納多元智能理論教學課件
- 北師大版數(shù)學八年級上冊全冊教案
- 現(xiàn)代文閱讀之散文
- 從業(yè)人員在安全生產方面的權利和義務
- 新開模具清單
- 抗菌藥物臨床應用指導原則(2023年版)
- 2023年軍政知識綜合題庫
- 2023-2024學年福建省福州市小學語文 2023-2024學年六年級語文期末試卷期末評估試卷
評論
0/150
提交評論