林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

林芝市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若正實數(shù)滿足,則的最小值為A. B. C. D.2.如圖,是水平放置的的直觀圖,則的面積是()A.6 B. C. D.123.已知均為銳角,,則=A. B. C. D.4.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對相對的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個數(shù)為()A.1 B.2 C.3 D.45.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.6.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲1000個點,己知恰有400個點落在陰影部分,據(jù)此可估計陰影部分的面積是A.2 B.3 C.10 D.157.將某選手的7個得分去掉1個最高分,去掉1個最低分,5個剩余分?jǐn)?shù)的平均分為21,現(xiàn)場作的7個分?jǐn)?shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認(rèn),在圖中以x表示,則5個剩余分?jǐn)?shù)的方差為()A. B. C.36 D.8.某同學(xué)用收集到的6組數(shù)據(jù)對(xi,yi)(i=1,2,3,4,5,6)制作成如圖所示的散點圖(點旁的數(shù)據(jù)為該點坐標(biāo)),并由最小二乘法計算得到回歸直線l的方程:x,相關(guān)指數(shù)為r.現(xiàn)給出以下3個結(jié)論:①r>0;②直線l恰好過點D;③1;其中正確的結(jié)論是A.①② B.①③C.②③ D.①②③9.各項均為實數(shù)的等比數(shù)列{an}前n項之和記為,若,,則等于A.150 B.-200 C.150或-200 D.-50或40010.方程的解集是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為偶函數(shù),則實數(shù)的值為________.12.把數(shù)列的所有數(shù)按照從大到小的原則寫成如下數(shù)表:第行有個數(shù),第行的第個數(shù)(從左數(shù)起)記為,則________.13.已知向量,,且與垂直,則的值為______.14.在中,,則______.15.已知向量,若,則________.16.已知,且,則的值是_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若,且對任意的,恒成立,求實數(shù)的取值范圍;(2)求,解關(guān)于的不等式.18.設(shè)數(shù)列的前項和為,若且求若數(shù)列滿足,求數(shù)列的前項和.19.已知四棱錐的底面為直角梯形,,,底面,且,是的中點.(1)求證:直線平面;(2)若,求二面角的正弦值.20.已知集合.(Ⅰ)求;(Ⅱ)若集合,寫出集合的所有子集.21.在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當(dāng)且僅當(dāng),取等號,故選D.【點睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).2、D【解析】由直觀圖畫法規(guī)則,可得是一個直角三角形,直角邊,,故選D.3、A【解析】因為,所以,又,所以,則;因為且,所以,又,所以;則====;故選A.點睛:三角函數(shù)式的化簡要遵循“三看”原則(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.4、A【解析】

根據(jù)棱柱的概念和四棱錐的基本特征,逐項進(jìn)行判定,即可求解,得到答案.【詳解】由題意,根據(jù)棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對相對的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【點睛】本題主要考查了四棱柱的概念及其應(yīng)用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、B【解析】分析:首先根據(jù)正方形的面積求得正方形的邊長,從而進(jìn)一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關(guān)公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長為的正方形,結(jié)合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點睛:該題考查的是有關(guān)圓柱的表面積的求解問題,在解題的過程中,需要利用題的條件確定圓柱的相關(guān)量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時候,一定要注意是兩個底面圓與側(cè)面積的和.6、C【解析】

根據(jù)古典概型概率公式以及幾何概型概率公式分別計算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點睛】(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.7、B【解析】

由剩余5個分?jǐn)?shù)的平均數(shù)為21,據(jù)莖葉圖列方程求出x=4,由此能求出5個剩余分?jǐn)?shù)的方差.【詳解】∵將某選手的7個得分去掉1個最高分,去掉1個最低分,剩余5個分?jǐn)?shù)的平均數(shù)為21,∴由莖葉圖得:得x=4,∴5個分?jǐn)?shù)的方差為:S2故選B【點睛】本題考查方差的求法,考查平均數(shù)、方差、莖葉圖基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.8、A【解析】由圖可知這些點分布在一條斜率大于零的直線附近,所以為正相關(guān),即相關(guān)系數(shù)因為所以回歸直線的方程必過點,即直線恰好過點;因為直線斜率接近于AD斜率,而,所以③錯誤,綜上正確結(jié)論是①②,選A.9、A【解析】

根據(jù)等比數(shù)列的前n項和公式化簡S10=10,S30=70,分別求得關(guān)于q的兩個關(guān)系式,可求得公比q的10次方的值,再利用前n項和公式計算S40即可.【詳解】因為{an}是等比數(shù)列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案選A.【點睛】此題考查學(xué)生靈活運用等比數(shù)列的前n項和的公式化簡求值,是一道綜合題,有一定的運算技巧,需學(xué)生在練習(xí)中慢慢培養(yǎng).10、C【解析】

把方程化為,結(jié)合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程,可化為,解得,即方程的解集為.故答案為:C.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式,以及三角方程的求解,其中解答中熟記正切函數(shù)的性質(zhì),準(zhǔn)確求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

根據(jù)偶函數(shù)的定義知,即可求解.【詳解】因為為偶函數(shù),所以,故,解得.故填4.【點睛】本題主要考查了偶函數(shù)的定義,利用定義求參數(shù)的取值,屬于中檔題.12、【解析】

第行有個數(shù)知每行數(shù)的個數(shù)成等比數(shù)列,要求,先要求出,就必須求出前行一共出現(xiàn)了多少個數(shù),根據(jù)等比數(shù)列的求和公式可求,而由可知,每一行數(shù)的分母成等差數(shù)列,可求出,令,即可求出.【詳解】由第行有個數(shù),可知每一行數(shù)的個數(shù)成等比數(shù)列,首項是,公比是,所以,前行共有個數(shù),所以,第行第一個數(shù)為,,因此,.故答案為:.【點睛】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意數(shù)陣的應(yīng)用,同時要找出數(shù)陣的規(guī)律,考查推理能力,屬于中等題.13、【解析】

根據(jù)與垂直即可得出,進(jìn)行數(shù)量積的坐標(biāo)運算即可求出x的值.【詳解】;;.故答案為.【點睛】本題考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.14、【解析】

由已知求得,進(jìn)一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點睛】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.15、【解析】

直接利用向量平行性質(zhì)得到答案.【詳解】,若故答案為【點睛】本題考查了向量平行的性質(zhì),屬于簡單題.16、【解析】

計算出的值,然后利用誘導(dǎo)公式可求得的值.【詳解】,,則,因此,.故答案為:.【點睛】本題考查利用誘導(dǎo)公式求值,同時也考查了同角三角函數(shù)基本關(guān)系的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)由題意,若,則函數(shù)關(guān)于對稱,根據(jù)二次函數(shù)對稱性,可求,代入化簡得在上恒成立,由,知當(dāng)為最小值,根據(jù)恒成立思想,令最小值,即可求解;(2)根據(jù)題意,由,化簡一元二次不等式為,討論參數(shù)范圍,寫出解集即可.【詳解】解:(1)若,所以函數(shù)對稱軸,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式變?yōu)椋驗?,所?所以當(dāng),即時,解為;當(dāng)時,解集為;當(dāng),即時,解為綜上,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為必;當(dāng)時,不等式的解隼為【點睛】本題考查(1)函數(shù)恒成立問題;(2)含參一元二次不等式的解法;考查計算能力,考查分類討論思想,屬于中等題型.18、(1);(2).【解析】

(1)由時,,再驗證適合,于是得出,再利用等差數(shù)列的求和公式可求出;(2)求出數(shù)列的通項公式,判斷出數(shù)列為等比數(shù)列,再利用等比數(shù)列的求和公式求出數(shù)列的前項和.【詳解】(1)當(dāng)且時,;也適合上式,所以,,則數(shù)列為等差數(shù)列,因此,;(2),且,所以,數(shù)列是等比數(shù)列,且公比為,所以.【點睛】本題考查數(shù)列的前項和與數(shù)列通項的關(guān)系,考查等差數(shù)列與等比數(shù)列的求和公式,考查計算能力,屬于中等題.19、(1)證明見解析;(2).【解析】

(1)取中點,連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點,連結(jié),,,是的中點,,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設(shè)平面的法向量,,,則,取,得.設(shè)平面的法向量,,,則,取,得.設(shè)二面角的平面角為,則.二面角的余弦值為.【點睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運算求解能力,屬于中檔題.20、(Ⅰ)(Ⅱ).【解析】

(Ⅰ)求解二次不等式從而求得集合A,利用指數(shù)函數(shù)的圖像求出集合B,再進(jìn)行并集運算即可;(Ⅱ)依次求出,,即可寫出集合C的子集.【詳解】(Ⅰ)由,得,即有,于是.作出函數(shù)的圖象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論