2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省合肥市壽春中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.其中正確的命題是()A.①② B.②③ C.③④ D.④2.已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且若對(duì)任意的,恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.函數(shù)的最小正周期為,則的圖象的一條對(duì)稱軸方程是()A. B. C. D.4.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)獎(jiǎng)金投入,若該公司年全年投入研發(fā)獎(jiǎng)金萬元,在此基礎(chǔ)上,每年投入的研發(fā)獎(jiǎng)金比上一年增長,則該公司全年投入的研發(fā)獎(jiǎng)金開始超過萬元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年5.函數(shù),是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)6.已知圓,直線.設(shè)圓O上到直線l的距離等于2的點(diǎn)的個(gè)數(shù)為k,則()A.1 B.2 C.3 D.47.已知向量,且,則的值為()A.1 B.3 C.1或3 D.48.在平面直角坐標(biāo)系中,角的頂點(diǎn)與原點(diǎn)重合,它的始邊與軸的非負(fù)半軸重合,終邊交單位圓于點(diǎn),則的值為()A. B. C. D.9.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個(gè)?”現(xiàn)有這樣的一個(gè)正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為()A. B. C. D.10.在中,,則的形狀為()A.直角三角形 B.等腰三角形 C.鈍角三角形 D.正三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則________.12.在數(shù)列中,,,若,則的前項(xiàng)和取得最大值時(shí)的值為__________.13.當(dāng)函數(shù)取得最大值時(shí),=__________.14.已知向量,,則在方向上的投影為______.15.若函數(shù)的反函數(shù)的圖象過點(diǎn),則________.16.如圖,圓錐形容器的高為圓錐內(nèi)水面的高為,且,若將圓錐形容器倒置,水面高為,則等于__________.(用含有的代數(shù)式表示)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某快遞小哥從地出發(fā),沿小路以平均速度為20公里小時(shí)送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時(shí),問,汽車能否先到達(dá)處?18.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項(xiàng)公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),函數(shù)取得最小值,求的最小值.19.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Sn.20.已知余切函數(shù).(1)請(qǐng)寫出余切函數(shù)的奇偶性,最小正周期,單調(diào)區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調(diào)遞減.21.已知是遞增數(shù)列,其前項(xiàng)和為,,且,.(Ⅰ)求數(shù)列的通項(xiàng);(Ⅱ)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請(qǐng)說明理由;(Ⅲ)設(shè),若對(duì)于任意的,不等式恒成立,求正整數(shù)的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

利用平面與平面垂直和平行的判定和性質(zhì),直線與平面平行的判斷,對(duì)選項(xiàng)逐一判斷即可.【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯(cuò)誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯(cuò)誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯(cuò)誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題.故選D.【點(diǎn)睛】本題考查平面與平面的位置關(guān)系,直線與平面的位置關(guān)系,考查空間想象力,屬于中檔題.2、C【解析】

由得到an=n,任意的,恒成立等價(jià)于,利用作差法求出的最小值即可.【詳解】當(dāng)n=1時(shí),,又∴∵an+12=2Sn+n+1,∴當(dāng)n≥2時(shí),an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項(xiàng)均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時(shí),適合上式∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【點(diǎn)睛】已知求的一般步驟:(1)當(dāng)時(shí),由求的值;(2)當(dāng)時(shí),由,求得的表達(dá)式;(3)檢驗(yàn)的值是否滿足(2)中的表達(dá)式,若不滿足則分段表示;(4)寫出的完整表達(dá)式.3、B【解析】

根據(jù)最小正周期為求解與解析式,再求解的對(duì)稱軸判斷即可.【詳解】因?yàn)樽钚≌芷跒?故.故,對(duì)稱軸方程為,解得.當(dāng)時(shí),.故選:B【點(diǎn)睛】本題主要考查了三角函數(shù)最小正周期的應(yīng)用以及對(duì)稱軸的計(jì)算.屬于基礎(chǔ)題.4、B【解析】試題分析:設(shè)從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對(duì)數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點(diǎn)】增長率問題,常用對(duì)數(shù)的應(yīng)用【名師點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用.在實(shí)際問題中平均增長率問題可以看作等比數(shù)列的應(yīng)用,解題時(shí)要注意把哪個(gè)數(shù)作為數(shù)列的首項(xiàng),然后根據(jù)等比數(shù)列的通項(xiàng)公式寫出通項(xiàng),列出不等式或方程就可求解.5、A【解析】

判斷函數(shù)函數(shù),的奇偶性,求出其周期即可得到結(jié)論.【詳解】設(shè)則故函數(shù)函數(shù),是奇函數(shù),由故函數(shù),是最小正周期為的奇函數(shù).故選A.【點(diǎn)睛】本題考查正弦函數(shù)的奇偶性和周期性,屬基礎(chǔ)題.6、B【解析】

找出圓O的圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系及r-d的值,即可作出判斷.【詳解】由圓的方程得到圓心O(0,0),半徑,∵圓心O到直線l的距離,且r?d=?1<2,∴圓O上到直線l的距離等于2的點(diǎn)的個(gè)數(shù)為2,即k=2.故選:B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,利用圓心到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系可判斷直線與圓的位置,考查計(jì)算和幾何應(yīng)用能力,屬于基礎(chǔ)題.7、B【解析】

先求出,再利用向量垂直的坐標(biāo)表示得到關(guān)于的方程,從而求出.【詳解】因?yàn)?,所以,因?yàn)?,則,解得所以答案選B.【點(diǎn)睛】本題主要考查了平面向量的坐標(biāo)運(yùn)算,以及向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.8、C【解析】

根據(jù)三角函數(shù)的定義,即可求解,得到答案.【詳解】由題意,角的頂點(diǎn)與原點(diǎn)重合,它的始邊與軸的非負(fù)半軸重合,終邊交單位圓于點(diǎn),根據(jù)三角函數(shù)的定義可得.故選:C.【點(diǎn)睛】本題主要考查了三角的函數(shù)的定義,其中解答中熟記三角函數(shù)的定義是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】

有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個(gè),由正方體的結(jié)構(gòu)及鋸木塊的方法,可知一面帶有紅漆的木塊是每個(gè)面的中間那16塊,共有6×16=96個(gè),由此能求出從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率.【詳解】有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個(gè),由正方體的結(jié)構(gòu)及鋸木塊的方法,可知一面帶有紅漆的木塊是每個(gè)面的中間那16塊,共有6×16=96個(gè),∴從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率:p.故選C.【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體的結(jié)構(gòu)特征等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.對(duì)于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個(gè)數(shù)可數(shù),使得滿足條件的事件個(gè)數(shù)除以總的事件個(gè)數(shù)即可.10、A【解析】

在中,由,變形為,再利用內(nèi)角和轉(zhuǎn)化為,通過兩角和的正弦展開判斷.【詳解】在中,因?yàn)?,所以,所以,所以,所以,所以直角三角?故選:A【點(diǎn)睛】本題主要考查了利用三角恒等變換判斷三角形的形狀,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由可得,然后用正弦的和差公式展開,然后將條件代入即可求出原式的值【詳解】因?yàn)樗怨蚀鸢笧椋骸军c(diǎn)睛】本題考查的三角恒等變換,解決此類問題時(shí)要善于發(fā)現(xiàn)角之間的關(guān)系.12、【解析】

解法一:利用數(shù)列的遞推公式,化簡得,得到數(shù)列為等差數(shù)列,求得數(shù)列的通項(xiàng)公式,得到,,得出所以,,,,進(jìn)而得到結(jié)論;解法二:化簡得,令,求得,進(jìn)而求得,再由,解得或,即可得到結(jié)論.【詳解】解法一:因?yàn)棰偎寓?,①②,得即,所以?shù)列為等差數(shù)列.在①中,取,得即,又,則,所以.因此,所以,,,所以,又,所以時(shí),取得最大值.解法二:由,得,令,則,則,即,代入得,取,得,解得,又,則,故所以,于是.由,得,解得或,又因?yàn)?,,所以時(shí),取得最大值.【點(diǎn)睛】本題主要考查了數(shù)列的綜合應(yīng)用,以及數(shù)列的最值問題的求解,此類題目是數(shù)列問題中的常見題型,對(duì)考生計(jì)算能力要求較高,解答中確定通項(xiàng)公式是基礎(chǔ),合理利用數(shù)列的性質(zhì)是關(guān)鍵,能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計(jì)算能力等,屬于中檔試題.13、【解析】

利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡,求得函數(shù)取得最大值時(shí)的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因?yàn)楹瘮?shù),其中,,當(dāng)時(shí),函數(shù)取得最大值,此時(shí),∴,,∴故答案為【點(diǎn)睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.14、【解析】

由平面向量投影的定義可得出在方向上的投影為,從而可計(jì)算出結(jié)果.【詳解】設(shè)平面向量與的夾角為,則在方向上的投影為.故答案為:.【點(diǎn)睛】本題考查平面向量投影的計(jì)算,熟悉平面向量投影的定義是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】

由反函數(shù)的性質(zhì)可得的圖象過,將代入,即可得結(jié)果.【詳解】的反函數(shù)的圖象過點(diǎn),的圖象過,故答案為.【點(diǎn)睛】本題主要考查反函數(shù)的基本性質(zhì),意在考查對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于基礎(chǔ)題.16、【解析】

根據(jù)水的體積不變,列出方程,解出的值,即可得到答案.【詳解】設(shè)圓錐形容器的底面面積為,則未倒置前液面的面積為,所以水的體積為,設(shè)倒置后液面面積為,則,所以,所以水的體積為,所以,解得.【點(diǎn)睛】本題主要考查了圓錐的結(jié)構(gòu)特征,以及圓錐的體積的計(jì)算與應(yīng)用,其中解答中熟練應(yīng)用圓錐的結(jié)構(gòu)特征,利用體積公式準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)汽車能先到達(dá)處.【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計(jì)算小哥到達(dá)地的時(shí)間,從而問題可得解;(2)由題意,可根據(jù)余弦定理分別算出與的長,計(jì)算汽車行馳的路程,從而求出汽車到達(dá)地所用的時(shí)間,計(jì)算其與步小哥所用時(shí)間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達(dá)處.點(diǎn)睛:此題主要考查了解三角形中正弦定理、余弦定理在實(shí)際生活中的應(yīng)用,以及關(guān)于路程問題的求解運(yùn)算等方面的知識(shí)與技能,屬于中低檔題型,也是常考題型.在此類問題中,總是正弦定理、余弦定理,以及相關(guān)聯(lián)的三角函數(shù)的知識(shí),所以根據(jù)題目條件、圖形進(jìn)行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.18、(1),;(2);(3)1【解析】

(1)根據(jù)等差數(shù)列、等比數(shù)列的通項(xiàng)公式即可求解;(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得(3)將化成的形式,依題意有,從而得到,因?yàn)楫?dāng)時(shí),函數(shù)取得最小值,所以,兩式相減即可求解.【詳解】(1)由等差數(shù)列、等比數(shù)列的通項(xiàng)公式可得,;(2)因?yàn)?,所以即,所以又由,得?)記,則,其中;因?yàn)榈膱D像關(guān)于點(diǎn)對(duì)稱,所以①因?yàn)楫?dāng)時(shí),函數(shù)取得最小值,所以②②-①得,因?yàn)?,?dāng),時(shí),取得最小值為0【點(diǎn)睛】本題主要考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式的求法、三角函數(shù)的化簡以及正弦型函數(shù)圖像的性質(zhì),考查較全面,屬于難題.19、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】

(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比中項(xiàng)的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項(xiàng)和Sn=3?3+5?32+7

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論