![安徽省安慶市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題_第1頁(yè)](http://file4.renrendoc.com/view5/M01/33/3E/wKhkGGZ88yaAcH8GAAFm8d3Eh90295.jpg)
![安徽省安慶市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題_第2頁(yè)](http://file4.renrendoc.com/view5/M01/33/3E/wKhkGGZ88yaAcH8GAAFm8d3Eh902952.jpg)
![安徽省安慶市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題_第3頁(yè)](http://file4.renrendoc.com/view5/M01/33/3E/wKhkGGZ88yaAcH8GAAFm8d3Eh902953.jpg)
![安徽省安慶市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題_第4頁(yè)](http://file4.renrendoc.com/view5/M01/33/3E/wKhkGGZ88yaAcH8GAAFm8d3Eh902954.jpg)
![安徽省安慶市2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題_第5頁(yè)](http://file4.renrendoc.com/view5/M01/33/3E/wKhkGGZ88yaAcH8GAAFm8d3Eh902955.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024年學(xué)年度第二學(xué)期期末綜合素質(zhì)調(diào)研八年級(jí)數(shù)學(xué)試題一.選擇題(本大題共10小題,每小題分,滿分40分)1.下列各式運(yùn)算結(jié)果為負(fù)數(shù)的是()A. B. C. D.2.下列各組數(shù)中,是勾股數(shù)的是()A.1,2,B.0.6,0.8,1 C.,, D.9,40,413.函數(shù)的自變量x的取值范圍是()A.x>﹣3 B.x≥﹣3 C.x>﹣3且x≠0 D.x≥﹣3且x≠04.過(guò)多邊形的一個(gè)頂點(diǎn)可以作4條對(duì)角線,則這個(gè)多邊形的邊數(shù)是()A.六 B.七 C.八 D.九5.已知關(guān)于x的一元二次方程x2﹣2x﹣b=0的一個(gè)解是x=﹣1,則方程的另一個(gè)解為()A.3 B.2 C.﹣3 D.﹣26.如圖,在平行四邊形ABCD中,AC⊥BC,且AC=6,BC=8,MN經(jīng)過(guò)AC中點(diǎn)O分別交AB、CD于點(diǎn)M、N,連接AN、CM,則下列結(jié)論錯(cuò)誤的是()A.四邊形AMCN為平行四邊形 B.當(dāng)AM=4.8時(shí),四邊形AMCN為矩形 C.當(dāng)AM=5時(shí),四邊形AMCN為菱形 D.四邊形AMCN不可能為正方形7.若關(guān)于x的方程x2﹣6x+8=0的兩個(gè)實(shí)數(shù)根恰好是等腰三角形ABC的兩邊長(zhǎng),則△ABC的周長(zhǎng)為()A.8 B.10 C.12 D.8或108.如圖,在直線l上依次擺放著四個(gè)正方形和三個(gè)等腰直角三角形,已知這三個(gè)等腰直角三角形的直角邊長(zhǎng)從左到右依次為2,3,4,四個(gè)正方形的面積從左到右依次是S1,S2,S3,S4,則S1+S2+S3+S4的值為()A.13 B.20 C.25 D.299.已知三個(gè)實(shí)數(shù)a,b,c滿足a﹣6b+9c=0,a+6b+9c<0,則()A.b<0,b2﹣ac≥0 B.b<0,b2﹣ac≤0 C.b>0,b2﹣ac≥0 D.b>0,b2﹣ac≤010.如圖所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC.CD上滑動(dòng),且E、F不與B.C、D重合.當(dāng)點(diǎn)E、F在BC、CD上滑動(dòng)時(shí),△CEF的面積最大值是()A.4 B. C. D.3二.填空題(共4小題,每小題5分,共20分)11.一個(gè)多邊形的內(nèi)角與外角的和是1440°,那么這個(gè)多邊形是邊形.12.如圖,四邊形ABCD中,AD∥BC,∠C=125°,若沿圖中虛線剪去∠D,則∠1+∠2=°.13.已知一組數(shù)據(jù)1,3,x,5,6的平均數(shù)是x﹣1,則這組數(shù)據(jù)的平均數(shù)為.15.如圖,正方形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在邊AB,BC上,點(diǎn)P在對(duì)角線AC上,EF∥AC,PE+PF=m,則(1)m的最小值為;(2)若m的值為10,則BE=。三.解答題(本題共2小題,每小題8分,滿分16分)15.計(jì)算:+(﹣1)2024﹣(π﹣)0﹣+.16.解方程:2x2﹣7x﹣4=0(配方法解).四.解答題(本題共2小題,每小題8分,滿分16分)17.如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A,C均為格點(diǎn)(網(wǎng)格線的交點(diǎn)).(1)若以AC為對(duì)角線,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出一個(gè)菱形ABCD(點(diǎn)B,D都在正方形網(wǎng)格的格點(diǎn)上);(2)你所畫(huà)出的菱形ABCD的面積是.18.觀察下列各式:=1+…①=1+…②=1+…③請(qǐng)利用你所發(fā)現(xiàn)的規(guī)律,解決下列問(wèn)題:(1)發(fā)現(xiàn)規(guī)律=;(2)計(jì)算+++…+.五.解答題(本題共2小題,每小題10分,滿分20分)19.已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC,CE∥DB,且∠BOC+2∠OBC=180°.(1)求證:四邊形ABCD是矩形;(2)若∠AOB=60°,AB=2,求四邊形OBEC的面積.20.安慶市某中學(xué)響應(yīng)習(xí)總書(shū)記“足球進(jìn)校園”的號(hào)召,開(kāi)設(shè)了“足球大課間”活動(dòng),現(xiàn)需要購(gòu)進(jìn)100個(gè)某品牌的足球供學(xué)生使用.經(jīng)調(diào)查,該品牌足球2022年的單價(jià)是100元,現(xiàn)在的單價(jià)為81元.(1)求2022年到現(xiàn)在該品牌足球單價(jià)平均每年降低的百分率.(2)購(gòu)買(mǎi)期間發(fā)現(xiàn)該品牌足球在A,B兩個(gè)體育用品店有不同的促銷(xiāo)方案,A店買(mǎi)十送一,B店全場(chǎng)9折,通過(guò)計(jì)算說(shuō)明到哪個(gè)店購(gòu)買(mǎi)足球更優(yōu)惠.六.解答題(本題共2小題,每小題12分,滿分24分)21.共享單車(chē)是高校學(xué)生最喜愛(ài)的“綠色出行”方式之一,許多高校均投放了使用手機(jī)支付就可以隨取隨用的共享單車(chē),某高校為了解本校學(xué)生出行使用共享單車(chē)的情況,隨機(jī)調(diào)查了部分出行學(xué)生使用共享單車(chē)的情況,并整理成如圖表:根據(jù)以上表格信息,解答下列問(wèn)題:(1)這組數(shù)據(jù)的中位數(shù)是;眾數(shù)是(2)這部分出行學(xué)生平均每人使用共享單車(chē)約多少次?(3)若該校某天有2000名學(xué)生出行,請(qǐng)你估計(jì)這天使用共享單車(chē)次數(shù)在4次及4次以上的學(xué)生有多少人?22.對(duì)于任意一個(gè)三位數(shù)k,如果k滿足各個(gè)數(shù)位上的數(shù)字都不為零,且十位上的數(shù)字的平方等于百位上的數(shù)字與個(gè)位上的數(shù)字之積的4倍,那么稱這個(gè)數(shù)為“喜鵲數(shù)”.例如:k=169,因?yàn)?2=4×1×9,所以169是“如意數(shù)”.(1)已知一個(gè)“如意數(shù)”k=100a+10b+c(1≤a、b、c≤9,其中a,b,c為正整數(shù)),請(qǐng)直接寫(xiě)出a,b,c所滿足的關(guān)系式;(2)利用(1)中“如意數(shù)”k中的a,b,c構(gòu)造兩個(gè)一元二次方程ax2+bx+c=0①與cx2+bx+a=0②,若x=m是方程①的一個(gè)根,x=n是方程②的一個(gè)根,求m與n滿足的關(guān)系式;(3)在(2)中條件下,且m+n=﹣2,請(qǐng)直接寫(xiě)出滿足條件的所有k的值.七.(本題滿分14分)23.如圖,在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=15cm,BC=12cm,點(diǎn)P從點(diǎn)B出發(fā),沿線段BA,向點(diǎn)A以2cm/s的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C以3cm/s的速度勻速運(yùn)動(dòng).已知兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)連接P、Q兩點(diǎn),則線段PQ長(zhǎng)的取值范圍是.(2)當(dāng)PQ=15時(shí),求t的值.(3)在線段CD上有一點(diǎn)E,QE=3,連接AC和PE,請(qǐng)問(wèn)是否存在某一時(shí)刻使得AC平分PE,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
參考答案與試題解析一.選擇題(本大題共10小題,每小題分,滿分40分)1.下列各式運(yùn)算結(jié)果為負(fù)數(shù)的是()A. B. C. D.【解答】解:A.=故此選項(xiàng)不符合題意;B.(-)2=2,故此選項(xiàng)不合題意;C.﹣=﹣2,故此選項(xiàng)合題意;D.=2,故此選項(xiàng)不合題意.故選:C.2.下列各組數(shù)中,是勾股數(shù)的是()A.1,2,B.0.6,0.8,1 C.,, D.9,40,41【解答】解:A、三個(gè)數(shù)不都是整數(shù),不是勾股數(shù),不符合題意;B、三個(gè)數(shù)不都是整數(shù),不是勾股數(shù),不符合題意;C、三個(gè)數(shù)都不是整數(shù),不是勾股數(shù),不符合題意;D、92+402=412,是勾股數(shù),符合題意.故選:D.3.函數(shù)的自變量x的取值范圍是()A.x>﹣3 B.x≥﹣3 C.x>﹣3且x≠0 D.x≥﹣3且x≠0【解答】解:由題意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故選:D.4.過(guò)多邊形的一個(gè)頂點(diǎn)可以作4條對(duì)角線,則這個(gè)多邊形的邊數(shù)是()A.六 B.七 C.八 D.九【解答】解:設(shè)多邊形的邊數(shù)是n,由題意得:n﹣3=4,∴n=7.∴這個(gè)多邊形的邊數(shù)是七.故選:B.5.已知關(guān)于x的一元二次方程x2﹣2x﹣b=0的一個(gè)解是x=﹣1,則方程的另一個(gè)解為()A.3 B.2 C.﹣3 D.﹣2【解答】解:設(shè)方程的另一個(gè)解為t,根據(jù)題意得﹣1+t=2,解得t=3.故選:A.6.如圖,在平行四邊形ABCD中,AC⊥BC,且AC=6,BC=8,MN經(jīng)過(guò)AC中點(diǎn)O分別交AB、CD于點(diǎn)M、N,連接AN、CM,則下列結(jié)論錯(cuò)誤的是()A.四邊形AMCN為平行四邊形 B.當(dāng)AM=4.8時(shí),四邊形AMCN為矩形 C.當(dāng)AM=5時(shí),四邊形AMCN為菱形 D.四邊形AMCN不可能為正方形【解答】解:∵AC⊥BC,AC=6,BC=8,∴AB==10.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠CAM=∠ACN,在△AOM與△CON中,,∴△AOM≌△CON(ASA),∴AM=CN,又AM∥CN,∴四邊形AMCN為平行四邊形,故選項(xiàng)A結(jié)論正確,不符合題意;假設(shè)當(dāng)AM=4.8時(shí),四邊形AMCN為矩形,那么∠AMC=90°,∴S△ABC=AB?CM=AC,∴CM===4.8,∴AC==≠6,∴假設(shè)不成立,即當(dāng)AM=4.8時(shí),四邊形AMCN不是矩形,故選項(xiàng)B結(jié)論錯(cuò)誤,符合題意;∵AM=5,AB=10,∴M為斜邊AB的中點(diǎn),∴CM=AM=AB,∴?AMCN為菱形,故選項(xiàng)C結(jié)論正確,不符合題意;當(dāng)MN⊥BC時(shí),?AMCN為菱形,此時(shí)M為斜邊AB的中點(diǎn),∵O為AC中點(diǎn),∴OM=BC=4≠3=OA,∴菱形AMCN的對(duì)角線不相等,∴四邊形AMCN不可能為正方形,故選項(xiàng)D結(jié)論正確,不符合題意;故選:B.7.若關(guān)于x的方程x2﹣6x+8=0的兩個(gè)實(shí)數(shù)根恰好是等腰三角形ABC的兩邊長(zhǎng),則△ABC的周長(zhǎng)為()A.8 B.10 C.12 D.8或10【解答】解:方程化為x2﹣6x+8=0,解得x1=4,x2=2,因?yàn)?+2=4,所以三角形三邊為4、4、2,所以△ABC的周長(zhǎng)為10.故選:B.8.如圖,在直線l上依次擺放著四個(gè)正方形和三個(gè)等腰直角三角形,已知這三個(gè)等腰直角三角形的直角邊長(zhǎng)從左到右依次為2,3,4,四個(gè)正方形的面積從左到右依次是S1,S2,S3,S4,則S1+S2+S3+S4的值為()A.13 B.20 C.25 D.29【解答】解:觀察發(fā)現(xiàn),∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=4,同理S3+S4=16.則S1+S2+S3+S4=4+16=20.故選:B.9.已知三個(gè)實(shí)數(shù)a,b,c滿足a﹣6b+9c=0,a+6b+9c<0,則()A.b<0,b2﹣ac≥0 B.b<0,b2﹣ac≤0 C.b>0,b2﹣ac≥0 D.b>0,b2﹣ac≤0【解答】解:∵a﹣6b+9c=0,∴a+9c=6b,b=,∵a+6b+9c<0,∴12b<0.∴b<0.∵b=,∴b2﹣ac=()2﹣ac=﹣ac==≥0.故選:A.10.如圖所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC.CD上滑動(dòng),且E、F不與B.C、D重合.當(dāng)點(diǎn)E、F在BC、CD上滑動(dòng)時(shí),△CEF的面積最大值是()A.4 B. C. D.3【解答】解:如圖,連接AC,∵四邊形ABCD為菱形,△AEF為正三角形,∴∠1+∠EAC=∠BAD=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠D=60°,又∵AB=CB=AD=CD,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC是定值,作AH⊥BC于H點(diǎn),則BH=AB=3,AH=AB=3,∴S四邊形AECF=S△ABC=BC?AH=×6×=9,由“垂線段最短”可知:當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短,∴△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時(shí)△CEF的面積就會(huì)最大,∴S△CEF=S四邊形AECF﹣S△AEF=9﹣=.故選:C.二.填空題(共4小題,每小題5分,共20分)11.一個(gè)多邊形的內(nèi)角與外角的和是1440°,那么這個(gè)多邊形是八邊形.【解答】解:設(shè)這個(gè)多邊形是n邊形,根據(jù)題意得:(n﹣2)?180°+360°=1440°,解得:n=8,∴這個(gè)多邊形是八邊形.故答案為:八.12.如圖,四邊形ABCD中,AD∥BC,∠C=125°,若沿圖中虛線剪去∠D,則∠1+∠2=235°.【解答】解:如圖,∵AD∥BC,∠C=125°,∴∠D=180°﹣125°=55°,∴∠3+∠4=125°,∵∠1+∠3=180°,∠2+∠4=180°,∴∠1+∠2=2×180°﹣125°=235°.故答案為:235.13.已知一組數(shù)據(jù)1,3,x,5,6的平均數(shù)是x﹣1,則這組數(shù)據(jù)的平均數(shù)為4.【解答】解:∵這一組數(shù)據(jù)1,3,x,5,6的平均數(shù)是x﹣1,∴1+3+x+5+6=5(x﹣1),解得x=5,∴這組數(shù)據(jù)的平均數(shù)為x﹣1=4,故答案為:4.15.如圖,正方形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在邊AB,BC上,點(diǎn)P在對(duì)角線AC上,EF∥AC,PE+PF=m,則(1)m的最小值為8;(2)若m的值為10,則BE=2或7。(1)【解答】解:作點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)E′,連接EE′,如圖,∵四邊形ABCD為正方形,∴∠BAC=∠DAC=45°,∴點(diǎn)E′在AD上,∵點(diǎn)P在對(duì)角線AC上,∴PE=PE′,∴當(dāng)點(diǎn)E,P,E′在一條直線上時(shí),PE+PF=m取得最小值.∵EF∥AC,∴∠BEF=∠BAC=45°,∴△BEF為等腰直角三角形,∴BE=BF.∴點(diǎn)E,P,E′在一條直線上,PE+PF=m取得最小值,這時(shí),四邊形ABFE′為矩形,∴PE+PF=m=E′F=AB=8,∴若BE=2,則m的最小值為8,(2)若m的最小值為10,設(shè)BE=x,則AE=AE′=8﹣x,∴,∴x=2或7,∴BE=2或7.三.解答題(本題共2小題,每小題8分,滿分16分)15.計(jì)算:+(﹣1)2024﹣(π﹣)0﹣+.【解答】解:原式=4+1﹣1﹣2+5=7;16.解方程:2x2﹣7x﹣4=0(配方法解).【解答】解:由原方程,得x2﹣x=2,x2﹣x+=,(x﹣)2=,解得x1=4,x1=.四.解答題(本題共2小題,每小題8分,滿分16分)17.如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn)A,C均為格點(diǎn)(網(wǎng)格線的交點(diǎn)).(1)若以AC為對(duì)角線,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出一個(gè)菱形ABCD(點(diǎn)B,D都在正方形網(wǎng)格的格點(diǎn)上);(2)你所畫(huà)出的菱形ABCD的面積是.【解答】解:如圖:(1)菱形ABCD即為所求;(2)×2×2=10,故答案為:10.18.觀察下列各式:=1+…①=1+…②=1+…③請(qǐng)利用你所發(fā)現(xiàn)的規(guī)律,解決下列問(wèn)題:(1)發(fā)現(xiàn)規(guī)律=1+;(2)計(jì)算+++…+.【解答】解:(1)根據(jù)規(guī)律可知,=1+(n為正整數(shù)),故答案為:1+;(2)由規(guī)律可得,原式=1++1++1++…+1+=2023+(1﹣+﹣+﹣+…+﹣)=2023+(1﹣)=2023,五.解答題(本題共2小題,每小題10分,滿分20分)19.已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC,CE∥DB,且∠BOC+2∠OBC=180°.(1)求證:四邊形ABCD是矩形;(2)若∠AOB=60°,AB=2,求四邊形OBEC的面積.【解答】(1)證明:∵∠BOC+2∠DBC=180°,∠BOC+∠DBC+∠ACB=180°,∴∠OBC=∠OCB,∴OB=OC,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∴AC=BD,∴四邊形ABCD是矩形;(2)解:∵四邊形ABCD是矩形,∠AOB=60°,AB=2,∴△OAB是邊長(zhǎng)為2的等邊三角形,∴∠ACB=30°,∴AC=2AB=4,,∵BE∥AC,∴S四邊形OBEC=S△ABC=AB?BC=×2×=2;∴四邊形OBEC的面積為;20.安慶市某中學(xué)響應(yīng)習(xí)總書(shū)記“足球進(jìn)校園”的號(hào)召,開(kāi)設(shè)了“足球大課間”活動(dòng),現(xiàn)需要購(gòu)進(jìn)100個(gè)某品牌的足球供學(xué)生使用.經(jīng)調(diào)查,該品牌足球2022年的單價(jià)是100元,現(xiàn)在的單價(jià)為81元.(1)求2022年到現(xiàn)在該品牌足球單價(jià)平均每年降低的百分率.(2)購(gòu)買(mǎi)期間發(fā)現(xiàn)該品牌足球在A,B兩個(gè)體育用品店有不同的促銷(xiāo)方案,A店買(mǎi)十送一,B店全場(chǎng)9折,通過(guò)計(jì)算說(shuō)明到哪個(gè)店購(gòu)買(mǎi)足球更優(yōu)惠.【解答】解:(1)設(shè)2022年到現(xiàn)在該品牌足球單價(jià)平均每年降低的百分率為x,依題意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).答:2022年到現(xiàn)在年該品牌足球單價(jià)平均每年降低的百分率為10%.(2)100×=≈90.91(個(gè)),90+1=91(個(gè)),在A店購(gòu)買(mǎi)所需費(fèi)用為81×91=7371(元),在B店購(gòu)買(mǎi)所需費(fèi)用為81×100×0.9=7290(元).∵7371>7290,∴去B店購(gòu)買(mǎi)足球更優(yōu)惠.六.解答題(本題共2小題,每小題12分,滿分24分)21.共享單車(chē)是高校學(xué)生最喜愛(ài)的“綠色出行”方式之一,許多高校均投放了使用手機(jī)支付就可以隨取隨用的共享單車(chē),某高校為了解本校學(xué)生出行使用共享單車(chē)的情況,隨機(jī)調(diào)查了部分出行學(xué)生使用共享單車(chē)的情況,并整理成如圖表:根據(jù)以上表格信息,解答下列問(wèn)題:(1)這組數(shù)據(jù)的中位數(shù)是3;眾數(shù)是2(2)這部分出行學(xué)生平均每人使用共享單車(chē)約多少次?(3)若該校某天有2000名學(xué)生出行,請(qǐng)你估計(jì)這天使用共享單車(chē)次數(shù)在4次及4次以上的學(xué)生有多少人?【解答】解:(1)調(diào)查的總?cè)藬?shù)為5+7+12+14+9+3=50人,將調(diào)查的50人共享單車(chē)的使用次數(shù)從小到大排列,第25個(gè)和第26個(gè)數(shù)都是3,所以中位數(shù)為=3,使用次數(shù)最多的是2次,共出現(xiàn)14人,因此眾數(shù)是3,故答案為:3,3;(2)(次),答:這部分出行學(xué)生平均每人使用共享單車(chē)約2.6次;(3)2000×=520(人),答:估計(jì)這天使用共享單車(chē)次數(shù)在4次及4次以上的學(xué)生有520人.22.對(duì)于任意一個(gè)三位數(shù)k,如果k滿足各個(gè)數(shù)位上的數(shù)字都不為零,且十位上的數(shù)字的平方等于百位上的數(shù)字與個(gè)位上的數(shù)字之積的4倍,那么稱這個(gè)數(shù)為“喜鵲數(shù)”.例如:k=169,因?yàn)?2=4×1×9,所以169是“如意數(shù)”.(1)已知一個(gè)“如意數(shù)”k=100a+10b+c(1≤a、b、c≤9,其中a,b,c為正整數(shù)),請(qǐng)直接寫(xiě)出a,b,c所滿足的關(guān)系式b2﹣4ac=0;(2)利用(1)中“如意數(shù)”k中的a,b,c構(gòu)造兩個(gè)一元二次方程ax2+bx+c=0①與cx2+bx+a=0②,若x=m是方程①的一個(gè)根,x=n是方程②的一個(gè)根,求m與n滿足的關(guān)系式;(3)在(2)中條件下,且m+n=﹣2,請(qǐng)直接寫(xiě)出滿足條件的所有k的值.【解答】解:(1)∵k=100a+10b+c是如意數(shù),∴b2=4ac,即b2﹣4ac=0;故答案為:b2﹣4ac=0;(2)∵x=m是一元二次方程ax2+bx+c=0的一個(gè)根,x=n是一元二次方程cx2+bx+a=0的一個(gè)根,∴am2+bm+c=0,cn2+bn+a=0,將cn2+bn+a=0兩邊同除以n2得:a()2+b()+c=0,∴將m、看成是方程ax2+bx+c的兩個(gè)根,∵b2﹣4ac=0,∴方程ax2+bx+c有兩個(gè)相等的實(shí)數(shù)根,∴m=,即mn=1;故答案為:mn=1.(3)∵m+n=﹣2,mn=1,∴m=﹣
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)模式對(duì)物流體系的影響分析
- 安全生產(chǎn)許可證變更申請(qǐng)書(shū)
- 殘疾人低保申請(qǐng)書(shū)模板
- 訪問(wèn)學(xué)者 申請(qǐng)書(shū)
- 2025年度醫(yī)療器械質(zhì)量檢測(cè)與認(rèn)證服務(wù)合同
- 電商物流末端配送模式創(chuàng)新與實(shí)踐
- 2025年度城市綠化與景觀設(shè)計(jì)合作框架協(xié)議
- 工作申請(qǐng)書(shū) 英文
- 工作求職申請(qǐng)書(shū)
- 紅色基因引領(lǐng)五育成長(zhǎng)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋包頭財(cái)經(jīng)信息職業(yè)學(xué)校
- 裝修垃圾清運(yùn)方案
- 2024年四川省廣元市中考物理試題(含解析)
- 急救藥品課件教學(xué)課件
- 數(shù)字出版概論 課件 第七章 數(shù)字內(nèi)容服務(wù)相關(guān)技術(shù)
- 信號(hào)與系統(tǒng)復(fù)習(xí)題(答案全)
- 兒童福利機(jī)構(gòu)安全管理規(guī)范
- 第1課 おじぎ 課件高中日語(yǔ)人教版第一冊(cè)-1
- ISO∕IEC 23894-2023 信息技術(shù) -人工智能 - 風(fēng)險(xiǎn)管理指南(雷澤佳譯-2024)
- 六年級(jí)下冊(cè)語(yǔ)文第一單元測(cè)試卷 部編版(含答案)
- 鄭州市地圖含區(qū)縣可編輯可填充動(dòng)畫(huà)演示矢量分層地圖課件模板
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)新版
評(píng)論
0/150
提交評(píng)論