廣東省高要市重點中學2024屆中考二模數(shù)學試題含解析_第1頁
廣東省高要市重點中學2024屆中考二模數(shù)學試題含解析_第2頁
廣東省高要市重點中學2024屆中考二模數(shù)學試題含解析_第3頁
廣東省高要市重點中學2024屆中考二模數(shù)學試題含解析_第4頁
廣東省高要市重點中學2024屆中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省高要市重點中學2024屆中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.92.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.3.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.4.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形5.甲、乙兩位同學做中國結(jié),已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結(jié)的個數(shù).如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=6.在下列四個汽車標志圖案中,能用平移變換來分析其形成過程的圖案是()A. B. C. D.7.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y18.2cos30°的值等于()A.1 B. C. D.29.在一次數(shù)學答題比賽中,五位同學答對題目的個數(shù)分別為7,5,3,5,10,則關于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.610.的倒數(shù)的絕對值是()A. B. C. D.11.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點A′,B,則的值為_________.14.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,4),則點B4的坐標為_____,點B2017的坐標為_____.15.如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠CAB=60°,弦AD平分∠CAB,若AD=6,則AC=_____.16.計算:()?=__.17.已知x+y=8,xy=2,則x2y+xy2=_____.18.不等式組的最小整數(shù)解是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設直線PB與直線AC交于點E.求∠BAC的度數(shù);當點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.20.(6分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.21.(6分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?22.(8分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.23.(8分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.求與之間的函數(shù)關系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.24.(10分)某校為了解本校學生每周參加課外輔導班的情況,隨機調(diào)査了部分學生一周內(nèi)參加課外輔導班的學科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調(diào)查結(jié)果估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有人.25.(10分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設點P的橫坐標為m.(1)求此拋物線所對應的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當四邊形PEDF為平行四邊形時,求m的值.26.(12分)某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計圖表.征文比賽成績頻數(shù)分布表分數(shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計1請根據(jù)以上信息,解決下列問題:(1)征文比賽成績頻數(shù)分布表中c的值是;(2)補全征文比賽成績頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數(shù).27.(12分)關于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)寫出一個m的值,并求出此時方程的根.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關鍵.2、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數(shù)二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.3、C【解析】

根據(jù)圓的弦的性質(zhì),連接DC,計算CD的長,再根據(jù)直角三角形的三角函數(shù)計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數(shù)的計算,結(jié)合考查圓性質(zhì)的計算,關鍵在于利用等量替代原則.4、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.5、A【解析】

設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等即可列方程.【詳解】設甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【點睛】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.6、D【解析】

根據(jù)平移不改變圖形的形狀和大小,將題中所示的圖案通過平移后可以得到的圖案是D.【詳解】解:觀察圖形可知圖案D通過平移后可以得到.

故選D.【點睛】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學生易混淆圖形的平移與旋轉(zhuǎn)或翻轉(zhuǎn).7、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對稱軸為x=1,根據(jù)函數(shù)圖像的對稱性,可得這三點的函數(shù)值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時先根據(jù)頂點式求出開口方向,和對稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考常考題,難度有點偏大,注意結(jié)合圖形判斷驗證.8、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應用,熟記30°、45°、60°角的三角函數(shù)值是解題關鍵.9、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.10、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).11、A【解析】

根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關鍵.12、B【解析】

根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征;矩形的性質(zhì),利用數(shù)形結(jié)合思想解題是關鍵.14、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的長,進而得出三角形的周長,進而求出B2,B4的橫坐標,進而得出變化規(guī)律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標為:10,B4的橫坐標為:2×10=20,B2016的橫坐標為:×10=1.∵B2C2=B4C4=OB=4,∴點B4的坐標為(20,4),∴B2017的橫坐標為1++=10086,縱坐標為0,∴點B2017的坐標為:(10086,0).故答案為(20,4)、(10086,0).【點睛】本題主要考查了點的坐標以及圖形變化類,根據(jù)題意得出B點橫坐標變化規(guī)律是解題的關鍵.15、2【解析】

首先連接BD,由AB是⊙O的直徑,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度數(shù),又由AD=6,求得AB的長,繼而求得答案.【詳解】解:連接BD,∵AB是⊙O的直徑,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB?cos60°=4×=2.故答案為2.16、1【解析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.17、1【解析】

將所求式子提取xy分解因式后,把x+y與xy的值代入計算,即可得到所求式子的值.【詳解】∵x+y=8,xy=2,

∴x2y+xy2=xy(x+y)=2×8=1.

故答案為:1.【點睛】本題考查的知識點是因式分解的應用,解題關鍵是將所求式子分解因式.18、-1【解析】分析:先求出每個不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數(shù)解是-1,故答案為:-1.點睛:本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集得出不等式組的解集是解此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】

(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設BD=9k,PD=2k,,,,.【點睛】本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質(zhì),垂直平分線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),勾股定理,同底等高的三角形的面積相等是解答本題的關鍵.20、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些.∵兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、(1)40(2)126°,1(3)940名【解析】

(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總?cè)藬?shù)乘以對應的百分比即可求解.【詳解】(1)學生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有940名.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.22、(1)證明見解析;(2)12【解析】

(1)由平行四邊形的性質(zhì)和角平分線得出∠BAF=∠BFA,即可得出AB=BF;(2)由題意可證△ABF為等邊三角形,點E是AF的中點.可求EF、BF的值,即可得解.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由題意可證△ABF為等邊三角形,點E是AF的中點在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四邊形ABCD的周長為1223、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】

(1)可用待定系數(shù)法來確定y與x之間的函數(shù)關系式;(2)根據(jù)利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關系式,然后根據(jù)其性質(zhì)來判斷出最大利潤;(3)首先得出w與x的函數(shù)關系式,進而利用所獲利潤等于3600元時,對應x的值,根據(jù)增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數(shù)關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數(shù)的應用、一次函數(shù)的應用和一元二次方程的應用,利用函數(shù)增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數(shù)模型是解答本題的重點和難點.24、(1)圖形見解析;(2)1;(3)1.【解析】

(1)由A的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其它類別人數(shù)求得B的人數(shù)即可補全圖形;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總?cè)藬?shù)乘以樣本中D和E人數(shù)占總?cè)藬?shù)的比例即可得.【詳解】解:(1)∵被調(diào)查的總?cè)藬?shù)為20÷20%=100(人),則輔導1個學科(B類別)的人數(shù)為100﹣(20+30+10+5)=35(人),補全圖形如下:(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是1個學科,故答案為1;(3)估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有2000×=1(人),故答案為1.【點睛】此題主要考查了條形統(tǒng)計圖的應用以及扇形統(tǒng)計圖應用、利用樣本估計總體等知識,利用圖形得出正確信息求出樣本容量是解題關鍵.25、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;(1)根據(jù)自變量與函數(shù)值的對應關系,可得F點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據(jù)平行四邊形的對邊相等,可得關于m的方程,根據(jù)解方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論