陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第1頁
陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第2頁
陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第3頁
陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第4頁
陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

陜西省西安市陜西西安高新第二校2023-2024學年中考數(shù)學對點突破模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④2.如圖,與∠1是內(nèi)錯角的是()A.∠2B.∠3C.∠4D.∠53.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.94.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(

)A. B. C. D.5.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.6.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根7.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm8.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=29.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算10.計算±的值為()A.±3 B.±9 C.3 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.若不等式組x<4x<m的解集是x<4,則m12.我國明代數(shù)學家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”意思是:有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分1個,正好分完,試問大、小和尚各幾人?設大、小和尚各有x,y人,則可以列方程組__________.13.如圖,已知,D、E分別是邊BA、CA延長線上的點,且如果,,那么AE的長為______.14.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.15.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內(nèi),將正ΔABC繞點A逆時針針旋轉(zhuǎn),當點C第一次落在圓上時,旋轉(zhuǎn)角的正切值為_______________16.如圖1,在平面直角坐標系中,將?ABCD放置在第一象限,且AB∥x軸,直線y=﹣x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2,那么ABCD面積為_____.三、解答題(共8題,共72分)17.(8分)為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.被隨機抽取的學生共有多少名?在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?18.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.19.(8分)先化簡,再求值:x220.(8分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.21.(8分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.22.(10分)如圖,四邊形ABCD是平行四邊形,點E在BC上,點F在AD上,BE=DF,求證:AE=CF.23.(12分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;(2)求一次打開鎖的概率.24.如圖,四邊形ABCD內(nèi)接于圓,對角線AC與BD相交于點E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對各選項進行判斷:根據(jù)作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質(zhì).2、B【解析】由內(nèi)錯角定義選B.3、B【解析】

連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,

∴∠CFD=90°,

∴CF=CD?cos∠DCF=12×=,故選B.【點睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.4、D【解析】

一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.5、B【解析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.6、C【解析】

解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C7、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.8、A【解析】

將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.【點睛】此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.9、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.10、B【解析】

∵(±9)2=81,∴±±9.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.12、3x+【解析】

根據(jù)100個和尚分100個饅頭,正好分完.大和尚一人分3個,小和尚3人分一個得到等量關(guān)系為:大和尚的人數(shù)+小和尚的人數(shù)=100,大和尚分得的饅頭數(shù)+小和尚分得的饅頭數(shù)=100,依此列出方程組即可.【詳解】設大和尚x人,小和尚y人,由題意可得x+y=故答案為x+y=【點睛】本題考查了由實際問題抽象出二元一次方程組,關(guān)鍵以和尚數(shù)和饅頭數(shù)作為等量關(guān)系列出方程組.13、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.14、﹣2≤a<﹣1.【解析】

先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【點睛】本題考查了一元一次不等式組的整數(shù)解的應用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.15、3【解析】

作輔助線,首先求出∠DAC的大小,進而求出旋轉(zhuǎn)的角度,即可得出答案.【詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉(zhuǎn)角的正切值是33故答案為:33【點睛】此題考查等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),點與圓的位置關(guān)系,解直角三角形,解題關(guān)鍵在于作輔助線.16、1【解析】

根據(jù)圖象可以得到當移動的距離是4時,直線經(jīng)過點A,當移動距離是7時,直線經(jīng)過D,在移動距離是1時經(jīng)過B,則AB=1-4=4,當直線經(jīng)過D點,設其交AB與E,則DE=2,作DF⊥AB于點F.利用三角函數(shù)即可求得DF即平行四邊形的高,然后利用平行四邊形的面積公式即可求解【詳解】解:由圖象可知,當移動距離為4時,直線經(jīng)過點A,當移動距離為7時,直線經(jīng)過點D,移動距離為1時,直線經(jīng)過點B,則AB=1﹣4=4,當直線經(jīng)過點D,設其交AB于點E,則DE=2,作DF⊥AB于點F,∵y=﹣x于x軸負方向成45°角,且AB∥x軸,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面積為:AB?DF=4×2=1,故答案為1.【點睛】此題主要考查平行四邊形的性質(zhì)和一次函數(shù)圖象與幾何變換,解題關(guān)鍵在于利用好輔助線三、解答題(共8題,共72分)17、(1)被隨機抽取的學生共有50人;(2)活動數(shù)為3項的學生所對應的扇形圓心角為72°,(3)參與了4項或5項活動的學生共有720人.【解析】分析:(1)利用活動數(shù)為2項的學生的數(shù)量以及百分比,即可得到被隨機抽取的學生數(shù);(2)利用活動數(shù)為3項的學生數(shù),即可得到對應的扇形圓心角的度數(shù),利用活動數(shù)為5項的學生數(shù),即可補全折線統(tǒng)計圖;(3)利用參與了4項或5項活動的學生所占的百分比,即可得到全校參與了4項或5項活動的學生總數(shù).詳解:(1)被隨機抽取的學生共有14÷28%=50(人);(2)活動數(shù)為3項的學生所對應的扇形圓心角=×360°=72°,活動數(shù)為5項的學生為:50﹣8﹣14﹣10﹣12=6,如圖所示:(3)參與了4項或5項活動的學生共有×2000=720(人).點睛:本題主要考查折線統(tǒng)計圖與扇形統(tǒng)計圖及概率公式,根據(jù)折線統(tǒng)計圖和扇形統(tǒng)計圖得出解題所需的數(shù)據(jù)是解題的關(guān)鍵.18、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強.19、12【解析】

這道求代數(shù)式值的題目,不應考慮把x的值直接代入,通常做法是先化簡,然后再代入求值.【詳解】解:原式=?﹣=﹣=﹣=,當x=1時,原式==.【點睛】本題考查了分式的化簡求值,解題的關(guān)鍵是熟練的掌握分式的運算法則.20、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】

(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據(jù)“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.21、6作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G【解析】

(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,過G點作GD⊥AC于D,四邊形DEFG即為所求正方形.【詳解】解:(1)4×3÷2=6,故△ABC的面積等于6.(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.

故答案為:6,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G.【點睛】本題主要考查了作圖-應用與設計作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關(guān)鍵.22、見解析【解析】

根據(jù)平行四邊形性質(zhì)得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結(jié)論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論