云南省2024年中考數(shù)學仿真試卷含解析_第1頁
云南省2024年中考數(shù)學仿真試卷含解析_第2頁
云南省2024年中考數(shù)學仿真試卷含解析_第3頁
云南省2024年中考數(shù)學仿真試卷含解析_第4頁
云南省2024年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省2024年中考數(shù)學仿真試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=02.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=3.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>04.已知一次函數(shù)且隨的增大而增大,那么它的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.(2011?雅安)點P關(guān)于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)6.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.7.下列4個點,不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)8.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.9.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.210.下列說法中,正確的是()A.兩個全等三角形,一定是軸對稱的B.兩個軸對稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形11.把a?的根號外的a移到根號內(nèi)得()A. B.﹣ C.﹣ D.12.下列圖形是我國國產(chǎn)品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務(wù),綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.14.計算:2﹣1+=_____.15.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).16.分解因式:3ax2﹣3ay2=_____.17.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.18.如圖,邊長為6cm的正三角形內(nèi)接于⊙O,則陰影部分的面積為(結(jié)果保留π)_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結(jié)果即可).20.(6分)如圖,?ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點E在平行四邊形內(nèi)部,連接AE、BE,求∠AEB的度數(shù).21.(6分)已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.22.(8分)(1)計算:(2)化簡:23.(8分)有一個二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點坐標分別為A(1,0),B(x1,y1)(點B在點A的右側(cè));②對稱軸是x=3;③該函數(shù)有最小值是﹣1.(1)請根據(jù)以上信息求出二次函數(shù)表達式;(1)將該函數(shù)圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.24.(10分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.25.(10分)先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.26.(12分)計算:|﹣1|﹣2sin45°+﹣27.(12分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對稱性.2、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關(guān)鍵.3、C【解析】

首先求出P點坐標,進而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是正確得出P點坐標.4、B【解析】

根據(jù)一次函數(shù)的性質(zhì):k>0,y隨x的增大而增大;k<0,y隨x的增大而減小,進行解答即可.【詳解】解:∵一次函數(shù)y=kx-3且y隨x的增大而增大,

∴它的圖象經(jīng)過一、三、四象限,

∴不經(jīng)過第二象限,

故選:B.【點睛】本題考查了一次函數(shù)的性質(zhì),掌握一次函數(shù)所經(jīng)過的象限與k、b的值有關(guān)是解題的關(guān)鍵.5、A【解析】∵關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.6、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.7、D【解析】分析:根據(jù)得k=xy=-6,所以只要點的橫坐標與縱坐標的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.8、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.9、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.10、B【解析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.解:A.兩個全等三角形,一定是軸對稱的錯誤,三角形全等位置上不一定關(guān)于某一直線對稱,故本選項錯誤;B.兩個軸對稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形,錯誤;D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形,錯誤.故選B.11、C【解析】

根據(jù)二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質(zhì)得到,再把根號內(nèi)化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是??碱}型.12、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉(zhuǎn)180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、150【解析】設(shè)綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經(jīng)過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.14、【解析】根據(jù)負整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.15、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點:規(guī)律型16、3a(x+y)(x-y)【解析】

解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.17、12.【解析】

設(shè)AD=a,則AB=OC=2a,根據(jù)點D在反比例函數(shù)y=的圖象上,可得D點的坐標為(a,),所以O(shè)A=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設(shè)ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質(zhì)求得x=,即可得點E的坐標為(,),根據(jù)點E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設(shè)AD=a,則AB=OC=2a,∵點D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設(shè)ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點E的坐標為(,)是解決問題的關(guān)鍵.18、(4π﹣3)cm1【解析】

連接OB、OC,作OH⊥BC于H,根據(jù)圓周角定理可知∠BOC的度數(shù),根據(jù)等邊三角形的性質(zhì)可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設(shè)OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點B'落在A點右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點B'落在A點左邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)綜上所述:B'(1+,0),(1﹣,0)【點睛】本題結(jié)合翻折綜合考查了三角形相似和特殊角的三角函數(shù),第3問中理解B’點的兩種情況是解題關(guān)鍵.20、135°【解析】

先證明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,設(shè)∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四邊形的對角相等得出方程,求出x+y=135°,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,設(shè)∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì).21、等腰直角三角形【解析】

首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形或等腰直角三角形.考點:勾股定理的逆定理.22、(1);(2)-1;【解析】

(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪可以解答本題;(2)根據(jù)分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1【點睛】本題考查分式的混合運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計算方法.23、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解析】

(1)利用二次函數(shù)解析式的頂點式求得結(jié)果即可;(1)由已知條件可知直線與圖象“G”要有3個交點.分類討論:分別求得平行于x軸的直線與圖象“G”有1個交點、1個交點時x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個交點時x3+x4+x5的取值范圍.【詳解】(1)有上述信息可知該函數(shù)圖象的頂點坐標為:(3,﹣1)設(shè)二次函數(shù)表達式為:y=a(x﹣3)1﹣1.∵該圖象過A(1,0)∴0=a(1﹣3)1﹣1,解得a=.∴表達式為y=(x﹣3)1﹣1(1)如圖所示:由已知條件可知直線與圖形“G”要有三個交點1當直線與x軸重合時,有1個交點,由二次函數(shù)的軸對稱性可求x3+x4=6,∴x3+x4+x5>11,當直線過y=(x﹣3)1﹣1的圖象頂點時,有1個交點,由翻折可以得到翻折后的函數(shù)圖象為y=﹣(x﹣3)1+1,∴令(x﹣3)1+1=﹣1時,解得x=3+1或x=3﹣1(舍去)∴x3+x4+x5<9+1.綜上所述11<x3+x4+x5<9+1.【點睛】考查了二次函數(shù)綜合題,涉及到待定系數(shù)法求二次函數(shù)解析式,拋物線的對稱性質(zhì),二次函數(shù)圖象的幾何變換,直線與拋物線的交點等知識點,綜合性較強,需要注意“數(shù)形結(jié)合”數(shù)學思想的應(yīng)用.24、(1)證明見解析;(2).【解析】

(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD為半徑,∴DP是⊙O切線.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴圖中陰影部分的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論