山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題含解析_第1頁
山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題含解析_第2頁
山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題含解析_第3頁
山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題含解析_第4頁
山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省威海市文登區(qū)2025屆九上數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,已知四邊形是平行四邊形,下列結論不正確的是()A.當時,它是矩形 B.當時,它是菱形C.當時,它是菱形 D.當時,它是正方形2.在下列圖案中,是中心對稱圖形的是()A. B. C. D.3.我們要遵守交通規(guī)則,文明出行,做到“紅燈停,綠燈行”,小剛每天從家到學校需經過三個路口,且每個路口都安裝了紅綠燈,每個路口紅燈和綠燈亮的時間相同,那么小剛從家出發(fā)去學校,他遇到兩次紅燈的概率是()A. B. C. D.4.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組5.如圖,過點、,圓心在等腰的內部,,,,則的半徑為()A. B. C. D.6.下列語句所描述的事件是隨機事件的是()A.經過任意兩點畫一條直線 B.任意畫一個五邊形,其外角和為360°C.過平面內任意三個點畫一個圓 D.任意畫一個平行四邊形,是中心對稱圖形7.如圖,四邊形ABCD是⊙O的內接四邊形,若∠A=70°,則∠C的度數(shù)是()A.100° B.110° C.120° D.130°8.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣19.數(shù)學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A,B的距離,他們設計了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點,其中4位同學分別測得四組數(shù)據:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,F(xiàn)B.其中能根據所測數(shù)據求得A,B兩樹距離的有()A.1組 B.2組 C.3組 D.4組10.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是().A. B.C. D.二、填空題(每小題3分,共24分)11.若是關于的一元二次方程,則__________.12.一圓錐的母線長為5,底面半徑為3,則該圓錐的側面積為________.13.關于的方程=0的兩根分別是和,且=__________.14.如圖,點M是反比例函數(shù)()圖象上任意一點,AB⊥y軸于B,點C是x軸上的動點,則△ABC的面積為______.15.正方形ABCD的邊長為4,點P在DC邊上,且DP=1,點Q是AC上一動點,則DQ+PQ的最小值為______.16.如圖,某園林公司承擔了綠化某社區(qū)塊空地的綠化任務,工人工作一段時間后,提高了工作效率.該公司完成的綠化面積(單位:與工作時間(單位:)之間的函數(shù)關系如圖所示,則該公司提高工作效率前每小時完成的綠化面積是____________.17.如圖,邊長為1的小正方形構成的網格中,半徑為1的⊙O在格點上,則∠AED的正切值為_____.18.如圖,一塊飛鏢游戲板由大小相等的小正方形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),擊中黑色區(qū)域的概率是_____.三、解答題(共66分)19.(10分)如圖,已知是的直徑,弦于點,是的外角的平分線.求證:是的切線.20.(6分)用適當?shù)姆椒ń庀铝幸辉畏匠蹋?);(2).21.(6分)如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側,并表示出點A1的坐標.(2)作出△ABC繞點C順時針旋轉90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經過的路徑長(結果保留π).22.(8分)圖①,圖②都是8×8的正方形網格,每個小正方形的頂點稱為格點.線段OM,ON的端點均在格點上.在圖①,圖②給定的網格中以OM,ON為鄰邊各畫一個四邊形,使第四個頂點在格點上.要求:(1)圖①中所畫的四邊形是中心對稱圖形;(2)圖②中所畫的四邊形是軸對稱圖形;(3)所畫的兩個四邊形不全等.23.(8分)解下列方程:(1)(2)24.(8分)武漢市某中學進行九年級理化實驗考查,有A和B兩個考查實驗,規(guī)定每位學生只參加一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;(2)他們三人中至少有兩人參加實驗B的概率(直接寫出結果).25.(10分)總公司將一批襯衫由甲、乙兩家分店共同銷售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.經調查發(fā)現(xiàn),每件襯杉每降價1元,甲、乙兩家店一天都可多售出2件.設甲店每件襯衫降價a元時,一天可盈利y1元,乙店每件襯衫降價b元時,一天可盈利y2元.(1)當a=5時,求y1的值.(2)求y2關于b的函數(shù)表達式.(3)若總公司規(guī)定兩家分店下降的價格必須相同,請求出每件襯衫下降多少元時,兩家分店一天的盈利和最大,最大是多少元?26.(10分)某養(yǎng)豬場對豬舍進行噴藥消毒.在消毒的過程中,先經過的藥物集中噴灑,再封閉豬舍,然后再打開窗戶進行通風.已知室內每立方米空氣中含藥量()與藥物在空氣中的持續(xù)時間()之間的函數(shù)圖象如圖所示,其中在打開窗戶通風前與分別滿足兩個一次函數(shù),在通風后與滿足反比例函數(shù).(1)求反比例函數(shù)的關系式;(2)當豬舍內空氣中含藥量不低于且持續(xù)時間不少于,才能有效殺死病毒,問此次消毒是否有效?

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據已知及各個四邊形的判定對各個選項進行分析從而得到最后答案.【詳解】A.正確,對角線相等的平行四邊形是矩形;B.正確,對角線垂直的平行四邊形是菱形;C.正確,有一組鄰邊相等的平行四邊形叫做菱形;D.不正確,有一個角是直角的平行四邊形叫做矩形。故選D【點睛】此題考查平行四邊形的性質,矩形的判定,正方形的判定,解題關鍵在于掌握判定法則2、C【分析】根據中心對稱圖形的定義進行分析即可.【詳解】A、不是中心對稱圖形.故A選項錯誤;B、不是中心對稱圖形.故B選項錯誤;C、是中心對稱圖形.故C選項正確;D、不是中心對稱圖形.故D選項錯誤.故選C.【點睛】考點:中心對稱圖形.3、B【分析】畫樹狀圖得出所有情況數(shù)和遇到兩次紅燈的情況數(shù),根據概率公式即可得答案.【詳解】根據題意畫樹狀圖如下:共有8種等情況數(shù),其中遇到兩次紅燈的有3種,則遇到兩次紅燈的概率是,故選:B.【點睛】本題考查利用列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;根據樹狀圖得到遇兩次紅燈的情況數(shù)是解題關鍵.4、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應邊成比例,符合相似的條件;所以正確的有③⑥.故選A.5、A【分析】連接AO并延長,交BC于D,連接OB,根據垂徑定理得到BD=BC=3,根據等腰直角三角形的性質得到AD=BD=3,根據勾股定理計算即可.【詳解】解:連接AO并延長,交BC于D,連接OB,∵AB=AC,∴AD⊥BC,∴BD=BC=3,∵△ABC是等腰直角三角形,∴AD=BD=3,∴OD=2,∴OB=,故選:A.【點睛】本題考查的是垂徑定理,等腰直角三角形的性質,以及勾股定理等知識,掌握垂直弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關鍵.6、C【分析】直接利用多邊形的性質以及直線的性質、中心對稱圖形的定義分別分析得出答案.【詳解】解:A、經過任意兩點畫一條直線,是必然事件,故此選項錯誤;B、任意畫一個五邊形,其外角和為360°,是必然事件,故此選項錯誤;C、過平面內任意三個點畫一個圓,是隨機事件,故此選項錯誤;D、任意畫一個平行四邊形,是中心對稱圖形,是必然事件,故此選項錯誤;故選:C.【點睛】此題主要考查了隨機事件的定義,有可能發(fā)生有可能不發(fā)生的時間叫做隨機時間,正確掌握相關性質是解題關鍵.7、B【分析】利用圓內接四邊形對角互補的性質求解.【詳解】解:∵四邊形ABCD是⊙O的內接四邊形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故選B.【點睛】本題考查圓內接四邊形的性質,掌握圓內接四邊形對角互補是解題關鍵.8、D【分析】根據到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質9、C【分析】根據三角函數(shù)的定義及相似三角形的判定定理及性質對各選項逐一判斷即可得答案.【詳解】∵已知∠ACB的度數(shù)和AC的長,∴利用∠ACB的正切可求出AB的長,故①能求得A,B兩樹距離,∵AB//EF,∴△ADB∽△EDF,∴,故②能求得A,B兩樹距離,設AC=x,∴AD=CD+x,AB=,AB=;∵已知CD,∠ACB,∠ADB,∴可求出x,然后可得出AB,故③能求得A,B兩樹距離,已知∠F,∠ADB,F(xiàn)B不能求得A,B兩樹距離,故④求得A,B兩樹距離,綜上所述:求得A,B兩樹距離的有①②③,共3個,故選:C.【點睛】本題考查相似三角形的判定與性質及解直角三角形的應用,解答道題的關鍵是將實際問題轉化為數(shù)學問題,本題只要把實際問題抽象到相似三角形,解直角三角形即可求出.10、B【分析】根據軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A、既是中心對稱圖形,又是軸對稱圖形,不符合題意;B、是中心對稱圖形但不是軸對稱圖形,符合題意;C、不是中心對稱圖形,但是軸對稱圖形,不符合題意;D、不是中心對稱圖形,但是軸對稱圖形,不符合題意;故選B.【點睛】本題考查中心對稱圖形與軸對稱圖形的識別,熟練掌握中心對稱圖形與軸對稱圖形的定義是解題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】根據一元二次方程的定義可知的次數(shù)為2,列出方程求解即可得出答案.【詳解】解:∵是關于的一元二次方程,∴,解得:m=1,故答案為:1.【點睛】本題重點考查一元二次方程定義,理解一元二次方程的三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(1)是整式方程;其中理解特點(2)是解決這題的關鍵.12、15π【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側面積=?2π?3?5=15π.

故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.13、2【分析】根據一元二次方程根與系數(shù)的關系即可解答.【詳解】∵方程=0的兩根分別是和,∴,,∴=,故答案為:2.【點睛】此題考查根與系數(shù)的關系,熟記兩個關系式并運用解題是關鍵.14、1【解析】解:設A的坐標是(m,n),則mn=2,則AB=m,△ABC的AB邊上的高等于n,則△ABC的面積=mn=1.故答案為1.點睛:本題主要考查了反比例函數(shù)的系數(shù)k的幾何意義,△ABC的面積=|k|,本知識點是中考的重要考點,同學們應高度關注.15、1【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考慮通過作輔助線轉化DQ,PQ的值,從而找出其最小值求解.【詳解】解:如圖,連接BP,∵點B和點D關于直線AC對稱,∴QB=QD,則BP就是DQ+PQ的最小值,∵正方形ABCD的邊長是4,DP=1,∴CP=3,∴BP=∴DQ+PQ的最小值是1.【點睛】本題考查軸對稱-最短路線問題;正方形的性質.16、【分析】利用待定系數(shù)法求出提高效率后與的函數(shù)解析式,由此可得時,的值,然后即可得出答案.【詳解】由題意,可設提高效率后得與的函數(shù)解析式為將和代入得解得因此,與的函數(shù)解析式為當時,則該公司提高工作效率前每小時完成的綠化面積故答案為:100.【點睛】本題考查了一次函數(shù)的實際應用,依據圖象,利用待定系數(shù)法求出函數(shù)解析式是解題關鍵.17、.【詳解】解:根據圓周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案為:.【點睛】本題考查圓周角定理;銳角三角函數(shù).18、【分析】根據幾何概率的求解公式即可求解.【詳解】解:∵總面積為9個小正方形的面積,其中陰影部分面積為3個小正方形的面積∴飛鏢落在陰影部分的概率是,故答案為.【點睛】此題主要考查概率的求解,解題的關鍵是熟知幾何概率的公式.三、解答題(共66分)19、見解析【分析】根據垂徑定理可證明∠BAD=∠CAD,再結合角平分線的性質可得∠DAM=∠DAF,由此可證明∠OAM=90°,即可證明AM是的切線.【詳解】證明:∵AB⊥CD,AB是⊙O的直徑,∴,∴∠BAD=∠CAD,∵AM是∠DAF的角平分線,∴∠DAM=∠DAF,∵,∴∠OAM=∠BAD+∠DAM=90°,∴OA⊥AM,∴AM是⊙O的切線,【點睛】本題考查切線的判定定理,垂徑定理,圓周角定理.理解“經過半徑的外端且垂直于這條半徑的直線是圓的切線”是解決此題的關鍵.20、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展開、合并,再利用十字相乘法解方程即可.【詳解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【點睛】本題考查解一元二次方程,一元二次方程的常用解法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關鍵.21、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標即可;(2)分別作出A,B繞C點順時針旋轉90°后的對應點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經過的路徑長=π.【點睛】本題考查網格作圖與弧長計算,熟練掌握位似與旋轉作圖,以及弧長公式是解題的關鍵.22、(1)見解析;(2)見解析;(3)見解析【分析】(1)設小正方形的邊長為1,由勾股定理可知,由圖,結合題中要求可以OM,ON為鄰邊畫一個菱形;(2)符合題意的有菱形、箏形等是軸對稱圖形;(3)圖①和圖②的兩個四邊形不能是完全相同的.【詳解】解:(1)如圖即為所求(2)如圖即為所求【點睛】本題考查了軸對稱與中心對稱圖形,屬于開放題,熟練掌握軸對稱與中心對稱圖形的含義是解題的關鍵.23、【分析】(1)利用配方法得到(x﹣1)2=3,然后利用直接開平方法解方程;(2)先變形得到(2x﹣1)2﹣2(2x﹣1)=0,然后利用因式分解法解方程.【詳解】解:(1)x2﹣2x+1=3,(x﹣1)2=3,x﹣1=±,所以,(2)(2x﹣1)2﹣2(2x﹣1)=0,(2x﹣1)(2x﹣1﹣2)=0,2x﹣1=0或2x﹣1﹣2=0,所以x1=,x2=.【點睛】本題考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法.24、(1);(2)【分析】(1)先畫出樹狀圖,得出所有等情況數(shù)和小孟、小柯都參加實驗A考查的情況數(shù),再根據概率公式即可得出答案;(2)根據每人都有2種選法,得出共有8種等情況數(shù),他們三人中至少有兩人參加實驗B的有4種,再根據概率公式即可得出答案.【詳解】解:(1)畫樹狀圖如圖所示:∵兩人的參加實驗考查共有四種等可能結果,而兩人均參加實驗A考查有1種,∴小孟、小柯都參加實驗A考查的概率為.(2)共有8種等情況數(shù),他們三人中至少有兩人參加實驗B的有4種,所以他們三人中至少有兩人參加實驗B的概率是.故答案為:.【點睛】本題考查了數(shù)據統(tǒng)計的知識,中考必考題型,重點需要掌握樹狀圖的畫法.25、(1)a=5時,y1的值是1050;(2)y2=﹣2b2+28b+960;(3)每件襯衫下降11元時,兩家分店一天的盈利和最大,最大是2244元.【分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論