版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省彭澤縣2025屆數學九上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知拋物線經過和兩點,則n的值為()A.﹣2 B.﹣4 C.2 D.42.用配方法解方程,下列配方正確的是()A. B.C. D.3.下列條件中,一定能判斷兩個等腰三角形相似的是()A.都含有一個40°的內角 B.都含有一個50°的內角C.都含有一個60°的內角 D.都含有一個70°的內角4.如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F.P是⊙A上一點,且∠EPF=40°,則圖中陰影部分的面積是()A.4- B.4- C.8- D.8-5.在同一時刻,身高米的小強在陽光下的影長為米,一棵大樹的影長為米,則樹的高度為()A.米 B.米 C.米 D.米6.若△ABC∽△ADE,若AB=9,AC=6,AD=3,則EC的長是()A.2 B.3 C.4 D.57.二次函數y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C.0 D.68.如圖,線段CD兩個端點的坐標分別為C(4,4)、D(6,2),以原點O為位似中心,在第一象限內將線段CD縮小為線段AB,若點B的坐標為(3,1),則點A的坐標為()A.(0,3) B.(1,2) C.(2,2) D.(2,1)9.在△中,=90°,=4,那么的長是().A.5 B.6 C.8 D.910.如圖,l1∥l2∥l3,若,DF=6,則DE等于()A.3 B.3.2 C.3.6 D.4二、填空題(每小題3分,共24分)11.如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數關系y=﹣5x2+20x,在飛行過程中,當小球的行高度為15m時,則飛行時間是_____.12.如圖,某商店營業(yè)大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為______米.(結果保留兩個有效數字)(參考數據;sin31°=0.515,cos31°=0.857,tan31°=0.601)13.如圖,已知等邊的邊長為,頂點在軸正半軸上,將折疊,使點落在軸上的點處,折痕為.當是直角三角形時,點的坐標為__________.14.關于x的一元二次方程kx2+3x﹣1=0有實數根,則k的取值范圍是_____.15.某架飛機著陸后滑行的距離y(單位:m)關于滑行時間t(單位:s)的函數解析式是y=60t-t2,這架飛機著陸后滑行最后150m所用的時間是_______s.16.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.17.某扇形的弧長為πcm,面積為3πcm2,則該扇形的半徑為_____cm18.從一個不透明的口袋中隨機摸出一球,再放回袋中,不斷重復上述過程,一共摸了150次,其中有50次摸到黑球,已知口袋中僅有黑球5個和白球若干個,這些球除顏色外,其他都一樣,由此估計口袋中有___個白球.三、解答題(共66分)19.(10分)趙化鑫城某超市購進了一批單價為16元的日用品,銷售一段時間后,為獲得更多的利潤,商場決定提高銷售的價格,經試驗發(fā)現,若按每件20元銷售,每月能賣360件;若按每件25元銷售,每月能賣210件;若每月的銷售件數y(件)與價格x(元/件)滿足y=kx+b.(1)求出k與b的值,并指出x的取值范圍?(2)為了使每月獲得價格利潤1920元,商品價格應定為多少元?(3)要使每月利潤最大,商品價格又應定為多少?最大利潤是多少?20.(6分)某商店銷售一種銷售成本為40元/千克的水產品,若按50元/千克銷售,一個月可售出500千克,銷售單價每漲價1元,月銷售量就減少10千克.(1)①求出月銷售量y(千克)與銷售單價x(元/千克)之間的函數關系式;②求出月銷售利潤w(元)與銷售單價x(元/千克)之間的函數關系式;(2)在月銷售成本不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為多少元?(3)當銷售單價定為多少元時,能獲得最大利潤?最大利潤是多少元?21.(6分)如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OE//BD,連接BE,DE,BD,設BE交AC于點F,若∠DEB=∠DBC.(1)求證:BC是⊙O的切線;(2)若BF=BC=2,求圖中陰影部分的面積.22.(8分)用配方法解下列方程.(1);(2).23.(8分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若CD=9,tan∠ABE=,求⊙O的半徑.24.(8分)如圖,某實踐小組為測量某大學的旗桿和教學樓的高,先在處用高米的測角儀測得旗桿頂端的仰角,此時教學樓頂端恰好在視線上,再向前走米到達處,又測得教學樓頂端的仰角,點三點在同一水平線上,(參考數據:)(1)計算旗桿的高;(2)計算教學樓的高.25.(10分)如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數據算出電線桿AB的高嗎?26.(10分)如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.(1)判斷直線CD與⊙O的位置關系,并說明理由;(2)若BE=,DE=3,求⊙O的半徑及AC的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據和可以確定函數的對稱軸,再由對稱軸的即可求解;【詳解】解:拋物線經過和兩點,可知函數的對稱軸,,;,將點代入函數解析式,可得;故選B.【點睛】本題考查二次函數圖象上點的坐標;熟練掌握二次函數圖象上點的對稱性是解題的關鍵.2、C【分析】配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數的絕對值一半的平方.【詳解】解:等式兩邊同時加上一次項系數的絕對值一半的平方22,,∴;故選:C.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.3、C【解析】試題解析:因為A,B,D給出的角可能是頂角也可能是底角,所以不對應,則不能判定兩個等腰三角形相似;故A,B,D錯誤;C.有一個的內角的等腰三角形是等邊三角形,所有的等邊三角形相似,故C正確.故選C.4、B【解析】試題解析:連接AD,
∵BC是切線,點D是切點,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD?BC=×2×4=4,
∴S陰影部分=S△ABC-S扇形AEF=4-π.5、D【分析】根據在同一時刻,物高和影長成正比,由已知列出比例式即可求得結果.【詳解】解:∵在同一時刻,∴小強影長:小強身高=大樹影長:大樹高,即0.8:1.6=4.8:大樹高,解得大樹高=9.6米,故選:D.【點睛】本題考查了相似三角形在測量高度是的應用,把實際問題抽象到相似三角形中,利用相似三角形的性質解決問題是解題的關鍵是.6、C【分析】利用相似三角形的性質得,對應邊的比相等,求出AE的長,EC=AC-AE,即可計算DE的長;【詳解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故選C.【點睛】本題主要考查了相似三角形的判定與性質,掌握相似三角形的判定與性質是解題的關鍵.7、A【分析】將函數的解析式化成頂點式,再根據二次函數的圖象與性質即可得.【詳解】因此,二次函數的圖象特點為:開口向上,當時,y隨x的增大而減??;當時,y隨x的增大而增大則當時,二次函數取得最小值,最小值為.故選:A.【點睛】本題考查了二次函數的圖象與性質,熟記函數的圖象特征與性質是解題關鍵.8、C【解析】直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵在第一象限內將線段CD縮小為線段AB,點B的坐標為(3,1),D(6,2),∴以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∵C(4,4),∴端A點的坐標為:(2,2).故選:C.【點睛】本題考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.9、B【分析】根據余弦值等于鄰邊比斜邊即可得到答案.【詳解】在△中,=90°,=4,,∵,∴,∴AB=6,故選:B.【點睛】此題考查三角函數,熟記余弦值的邊的比的關系是解題的關鍵.10、C【解析】試題解析:根據平行線分線段成比例定理,可得:設解得:故選C.二、填空題(每小題3分,共24分)11、1s或3s【解析】根據題意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本題.【詳解】∵y=﹣5x2+20x,∴當y=15時,15=﹣5x2+20x,得x1=1,x2=3,故答案為1s或3s.【點睛】本題考查二次函數的應用、一元二次方程的應用,解答本題的關鍵是明確題意,利用二次函數的性質和一元二次方程的知識解答.12、6.2【分析】根據題意和銳角三角函數可以求得BC的長,從而可以解答本題.【詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為6.2.【點睛】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數和數形結合的思想解答.13、,【解析】當A′E∥x軸時,△A′EO是直角三角形,可根據∠A′OE的度數用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的長,也就能求出A′E的長,據此可求出A′的坐標;當∠A’EO=90°時,△A′EO是直角三角形,設OE=x,則AE=A’E=-x,根據三角函數的關系列出方程即可求解x,從而求出A’的坐標.【詳解】當A′E∥x軸時,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,設A′的坐標為(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐標是(0,1);當∠A’EO=90°時,△A′EO是直角三角形,設OE=x,則AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)綜上,A’的坐標為,.【點睛】此題主要考查圖形與坐標,解題的關鍵是熟知等邊三角形的性質、三角函數的應用.14、k?-94【解析】利用判別式,根據不等式即可解決問題.【詳解】∵關于x的一元二次方程kx2+3x﹣1=1有實數根,∴△≥1且k≠1,∴9+4k≥1,∴k?-94,且故答案為k?-94且【點睛】本題考查根的判別式,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:①當△>1時,方程有兩個不相等的兩個實數根;②當△=1時,方程有兩個相等的兩個實數根;③當△<1時,方程無實數根.上面的結論反過來也成立.15、1【解析】由于飛機著陸,不會倒著跑,所以當y取得最大值時,t也取得最大值,求得t的取值范圍,然后解方程即可得到結論.【詳解】當y取得最大值時,飛機停下來,則y=60t-t2=-(t-20)2+600,此時t=20,飛機著陸后滑行600米才能停下來.因此t的取值范圍是0≤t≤20;即當y=600-150=450時,即60t-t2=450,解得:t=1,t=30(不合題意舍去),∴滑行最后的150m所用的時間是20-1=1,故答案是:1.【點睛】本題考查二次函數的應用,解題的關鍵是明確題意,找出所求問題需要的條件.16、【分析】作AB的中點E,連接EM,CE,AD根據三角形中位線的性質和直角三角形斜邊中線等于斜邊一半求出EM和CE長,再根據三角形的三邊關系確定CM長度的范圍,從而確定CM的最小值.【詳解】解:如圖,取AB的中點E,連接CE,ME,AD,∵E是AB的中點,M是BD的中點,AD=2,∴EM為△BAD的中位線,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE為Rt△ACB斜邊的中線,∴,在△CEM中,,即,∴CM的最大值為.故答案為:.【點睛】本題考查了圓的性質,直角三角形的性質及中位線的性質,利用三角形三邊關系確定線段的最值問題,構造一個以CM為邊,另兩邊為定值的的三角形是解答此題的關鍵和難點.17、1【分析】根據扇形的面積公式S=,可得出R的值.【詳解】解:∵扇形的弧長為πcm,面積為3πcm2,扇形的面積公式S=,可得R=故答案為1.【點睛】本題考查了扇形面積的求法,掌握扇形面積公式是解答本題的關鍵.18、1【分析】先由“頻率=頻數÷數據總數”計算出頻率,再由簡單事件的概率公式列出方程求解即可.【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設口袋中大約有x個白球,則,解得.故答案為:1.【點睛】考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.關鍵是得到關于黑球的概率的等量關系.三、解答題(共66分)19、(1)k=﹣30,b=960,x取值范圍為16≤x≤32;(2)商品的定價為24元;(3)商品價格應定為24元,最大利潤是1元.【分析】(1)根據待定系數法求解即可;根據單價不低于進價(16元)和銷售件數y≥0可得關于x的不等式組,解不等式組即得x的取值范圍;(2)根據每件的利潤×銷售量=1,可得關于x的方程,解方程即可求出結果;(3)設每月利潤為W元,根據W=每件的利潤×銷售量可得W與x的函數關系式,然后根據二次函數的性質解答即可.【詳解】解:(1)由題意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范圍是:16≤x≤32;答:k=﹣30,b=960,x取值范圍為:16≤x≤32;(2)由題意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定價為24元;(3)設每月利潤為W元,由題意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴當x=24時,W最大=1.答:商品價格應定為24元,最大利潤是1元.【點睛】本題是方程和函數的應用題,主要考查了待定系數法求一次函數的解析式、一元二次方程的解法和二次函數的性質等知識,屬于常考題型,熟練掌握一元二次方程的解法和二次函數的性質是解題的關鍵.20、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為80元;(3)售價定為70元時會獲得最大利潤,最大利潤是9000元【分析】(1)根據題意可以得到月銷售利潤w(單位:元)與售價x(單位:元/千克)之間的函數解析式;(2)根據題意可以得到方程和相應的不等式,從而可以解答本題;(3)根據(1)中的關系式化為頂點式即可解答本題.【詳解】解:(1)①由題意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000]=﹣10x2+1400x﹣40000;(2)設銷售單價為a元,,解得,a=80,答:商店想在月銷售成本不超過10000元的情況下,使月銷售利潤達到8000元,銷售單價應定為80元;(3)∵y=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴當x=70時,y取得最大值,此時y=9000,答:當售價定為70元時會獲得最大利潤,最大利潤是9000元;【點睛】本題考查了二次函數的實際應用,掌握解二次函數的方法、二次函數的性質是解題的關鍵.21、(1)證明見解析;(2).【分析】(1)求出∠ADB的度數,求出∠ABD+∠DBC=90,根據切線判定推出即可;(2)連接OD,分別求出三角形DOB面積和扇形DOB面積,即可求出答案.【詳解】(1)是的直徑,,,,,,,是的切線;(2)連接,,且,,,,,,,,,的半徑為,陰影部分的面積扇形的面積三角形的面積.【點睛】本題考查了切線判定的定理和三角形及扇形面積的計算方法,熟練掌握該知識點是本題解題的關鍵.22、(1);(2).【分析】(1)先移項,然后等式兩邊同時加上一次項系數一半的平方,解方程即可;(2)先把原方程方程進行去括號,移項合并運算,然后再利用配方法進行解方程即可.【詳解】解:,,即,或,原方程的根為:.,,,,即,或,原方程的根為:.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握配方法解一元二次方程.23、(1)見解析;(2)【分析】(1)連接,證明,可得,則;(2)證明,,則,可求出,則答案可求出.【詳解】解:(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設AB=x,則BD=2x,AD==x,∵∠E=∠E,∠ABE=∠BDE,∴△AEB∽△BED,∴BE2=AE?DE,且==,設AE=a,則BE=2a,∴4a2=a(a+x),∴a=x,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴=,解得=3,∴AD=x=15,∴OA=.【點睛】本題考查切線的性質、解直角三角形、勾股定理等知識,解題的關鍵是學會添加常用輔助線解決問題.24、(1)旗桿的高約為米;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- 校園各項消防安全管理工作計劃三篇
- 【可行性報告】2025年防毒面具項目可行性研究分析報告
- 照明工業(yè)刻錄機行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 音樂一年級下冊教學計劃
- 開學典禮演講稿范文15篇
- 志愿者2022工作計劃安排三篇
- 語文教研組工作計劃
- 中航重機驗資報告
- 工作保證書集合15篇
- 軍工合作合同范例
- 2025年中國稀土集團總部部分崗位社會公開招聘管理單位筆試遴選500模擬題附帶答案詳解
- 超市柜臺長期出租合同范例
- 廣東省廣州市2025屆高三上學期12月調研測試語文試題(含答案)
- 【8物(科)期末】合肥市第四十五中學2023-2024學年八年級上學期期末物理試題
- 統(tǒng)編版2024-2025學年三年級語文上冊期末學業(yè)質量監(jiān)測試卷(含答案)
- 從0 開始運營抖?音號sop 文檔
- 2024-2025學年深圳市初三適應性考試模擬試卷歷史試卷
- 16J914-1 公用建筑衛(wèi)生間
- 贊比亞礦產資源及礦業(yè)開發(fā)前景分析
- 大型儲罐吊裝方案
評論
0/150
提交評論