河南省開封十中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
河南省開封十中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
河南省開封十中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
河南省開封十中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
河南省開封十中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.2.為虛數(shù)單位,則的虛部為()A. B. C. D.3.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q4.已知實數(shù)滿足,則的最小值為()A. B. C. D.5.的展開式中的一次項系數(shù)為()A. B. C. D.6.函數(shù)圖像可能是()A. B. C. D.7.A. B. C. D.8.已知數(shù)列滿足,則()A. B. C. D.9.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-210.已知,則()A. B. C. D.211.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且12.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.14.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.15.記為數(shù)列的前項和.若,則______.16.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當(dāng)時,求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.18.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin19.(12分)在直角坐標(biāo)系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標(biāo)方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.21.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達(dá)點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點在上,點在上,求的最小值以及此時的直角坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

因為時針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負(fù)角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負(fù)角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負(fù)角的定義以及弧度制,屬于基礎(chǔ)題.2、C【解析】

利用復(fù)數(shù)的運(yùn)算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.3、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運(yùn)用、幾何概型的特征與計算公式的運(yùn)用等知識與方法的綜合運(yùn)用,以及分析問題解決問題的能力。4、A【解析】

所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當(dāng)且僅當(dāng)時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.5、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.6、D【解析】

先判斷函數(shù)的奇偶性可排除選項A,C,當(dāng)時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當(dāng)正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.7、A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計算題.8、C【解析】

利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當(dāng)時,;當(dāng)時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.9、B【解析】

通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.10、B【解析】

結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.11、D【解析】

首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進(jìn)一步求出個各棱長.【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.12、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、56【解析】

根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.14、7.5【解析】

分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.15、1【解析】

由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項,以為公比的等比數(shù)列,則.故答案為:1.【點睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學(xué)生對這些知識的理解掌握水平.16、-5【解析】

畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;證明見解析.【解析】

當(dāng)時,集合共有個子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時,集合共有個子集,所以;①當(dāng)時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設(shè)當(dāng)時,存在有序集合組滿足題意,且,則當(dāng)時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.18、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運(yùn)用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.19、(1),(2)【解析】

先求出,再求圓的半徑和極坐標(biāo)方程;(2)設(shè)求出,,再求出得解.【詳解】(1)將化成直角坐標(biāo)方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標(biāo)方程,得.即圓M的極坐標(biāo)方程為.(2)設(shè),則,用代替.可得,【點睛】本題主要考查直角坐標(biāo)和極坐標(biāo)的互化,考查極徑的計算,意在考查學(xué)生對這些知識的理解掌握水平.20、(1):,直線:;(2).【解析】

(1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標(biāo)方程是;由,化為直角坐標(biāo)方程為.(2)設(shè),則,,,當(dāng)時,取得最大值為.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,掌握公式可輕松自如進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化.21、(1)見解析;(2)【解析】

(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點,所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點,方向為軸方向,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計算能力,屬于中檔題.22、(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論