湖北省七市教科研協(xié)作體2022-2023學(xué)年數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
湖北省七市教科研協(xié)作體2022-2023學(xué)年數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
湖北省七市教科研協(xié)作體2022-2023學(xué)年數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
湖北省七市教科研協(xié)作體2022-2023學(xué)年數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
湖北省七市教科研協(xié)作體2022-2023學(xué)年數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在我國(guó)傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類(lèi)別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.82.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱(chēng)這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米3.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.4.已知復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.5.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.6.已知拋物線(xiàn)上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離為()A.2 B.3 C.4 D.57.函數(shù)f(x)=2x-3A.[32C.[328.下列函數(shù)中,圖象關(guān)于軸對(duì)稱(chēng)的為()A. B.,C. D.9.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.10.已知向量,,則向量與的夾角為()A. B. C. D.11.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.29二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對(duì)邊分別為,已知,則的面積為_(kāi)__________.14.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問(wèn)卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_(kāi)______.15.已知直角坐標(biāo)系中起點(diǎn)為坐標(biāo)原點(diǎn)的向量滿(mǎn)足,且,,,存在,對(duì)于任意的實(shí)數(shù),不等式,則實(shí)數(shù)的取值范圍是______.16.已知函數(shù),若函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來(lái)自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望18.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點(diǎn),為棱上的一點(diǎn).(1)證明:面面;(2)當(dāng)為中點(diǎn)時(shí),求二面角余弦值.19.(12分)在平面直角坐標(biāo)系中,曲線(xiàn):(為參數(shù),),曲線(xiàn):(為參數(shù)).若曲線(xiàn)和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線(xiàn)的普通方程;(2)若點(diǎn),為曲線(xiàn)上兩動(dòng)點(diǎn),且滿(mǎn)足,求面積的最大值.20.(12分)在平面直角坐標(biāo)系中,為直線(xiàn)上動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線(xiàn):的兩條切線(xiàn),,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線(xiàn)是否恒過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.21.(12分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.22.(10分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.2、B【解析】

根據(jù)題意,畫(huà)出幾何關(guān)系,結(jié)合各線(xiàn)段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿(mǎn)足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.3、D【解析】

先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.4、A【解析】

根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.5、B【解析】

由可得,所以,故選B.6、D【解析】試題分析:拋物線(xiàn)焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線(xiàn)方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為,因?yàn)閽佄锞€(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,所以點(diǎn)A與拋物線(xiàn)焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線(xiàn)定義和拋物線(xiàn)上點(diǎn)的性質(zhì)拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.7、A【解析】

根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類(lèi)型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對(duì)實(shí)際問(wèn)題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx8、D【解析】

圖象關(guān)于軸對(duì)稱(chēng)的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對(duì)稱(chēng)的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對(duì)稱(chēng),故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對(duì)于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對(duì)稱(chēng).9、C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】

求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時(shí),通常代入公式進(jìn)行計(jì)算.11、B【解析】

構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.12、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由余弦定理先算出c,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點(diǎn)睛】本題考查利用余弦定理求解三角形的面積,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.14、【解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.15、【解析】

由題意可設(shè),,,由向量的坐標(biāo)運(yùn)算,以及恒成立思想可設(shè),的最小值即為點(diǎn),到直線(xiàn)的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點(diǎn)均在直線(xiàn)上,由于為任意實(shí)數(shù),可得時(shí),的最小值即為點(diǎn)到直線(xiàn)的距離,可得,對(duì)于任意的實(shí)數(shù),不等式,可得,故答案為:.【點(diǎn)睛】本題主要考查向量的模的求法,以及兩點(diǎn)的距離的運(yùn)用,考查直線(xiàn)方程的運(yùn)用,以及點(diǎn)到直線(xiàn)的距離,考查運(yùn)算能力,屬于中檔題.16、【解析】

作出函數(shù)的圖象及直線(xiàn),如下圖所示,因?yàn)楹瘮?shù)有個(gè)不同的零點(diǎn),所以由圖象可知,,,所以.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)分布列見(jiàn)解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點(diǎn)睛】本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1)證明見(jiàn)解析;(2).【解析】

(1)要證明面面,只需證明面即可;(2)以為坐標(biāo)原點(diǎn),以,,分別為,,軸建系,分別計(jì)算出面法向量,面的法向量,再利用公式計(jì)算即可.【詳解】證明:(1)因?yàn)榈酌鏋檎叫?,所以又因?yàn)椋?,滿(mǎn)足,所以又,面,面,,所以面.又因?yàn)槊?,所以,面?(2)由(1)知,,兩兩垂直,以為坐標(biāo)原點(diǎn),以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設(shè)面法向量為,則由得,令得,,即;同理,設(shè)面的法向量為,則由得,令得,,即,所以,設(shè)二面角的大小為,則所以二面角余弦值為.【點(diǎn)睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學(xué)生的運(yùn)算求解能力,此類(lèi)問(wèn)題關(guān)鍵是準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo),是一道中檔題.19、(1);(2)【解析】

(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線(xiàn)的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因?yàn)榍€(xiàn)和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.20、(1)見(jiàn)解析(2)直線(xiàn)過(guò)定點(diǎn).【解析】

(1)設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線(xiàn)的方程,設(shè)出點(diǎn)坐標(biāo)并代入切線(xiàn)的方程,同理將點(diǎn)坐標(biāo)代入切線(xiàn)的方程,利用韋達(dá)定理求得線(xiàn)段中點(diǎn)的橫坐標(biāo),由此判斷出軸.(2)求得點(diǎn)的縱坐標(biāo),由此求得點(diǎn)坐標(biāo),求得直線(xiàn)的斜率,由此求得直線(xiàn)的方程,化簡(jiǎn)后可得直線(xiàn)過(guò)定點(diǎn).【詳解】(1)設(shè)切點(diǎn),,,∴切線(xiàn)的斜率為,切線(xiàn):,設(shè),則有,化簡(jiǎn)得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線(xiàn):,即,∴直線(xiàn)過(guò)定點(diǎn).【點(diǎn)睛】本小題主要考查直線(xiàn)和拋物線(xiàn)的位置關(guān)系,考查直線(xiàn)過(guò)定點(diǎn)問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1)(2)2【解析】

(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.22、(1)見(jiàn)解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類(lèi)討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當(dāng)a>0時(shí),f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調(diào)遞增,在綜上:當(dāng)a≤0時(shí),f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增;當(dāng)0<a<1e時(shí),f(x)在(-∞,lna),自a=1e時(shí),f(x)在當(dāng)a>1e時(shí),f(x)在(-∞,-1),(ln(2)因?yàn)閤ex-ax-a+1≥0當(dāng)x=-1時(shí),0≤-1當(dāng)x>-1時(shí),a≤x令g(x)=xex設(shè)h(x)=e因?yàn)閔'(x)=e即hx=e

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論