![Engineering Basic Mechanics Ⅱ Dynamics 工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle_第1頁(yè)](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGaEL12AaTGoAAFagv-tmrQ394.jpg)
![Engineering Basic Mechanics Ⅱ Dynamics 工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle_第2頁(yè)](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGaEL12AaTGoAAFagv-tmrQ3942.jpg)
![Engineering Basic Mechanics Ⅱ Dynamics 工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle_第3頁(yè)](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGaEL12AaTGoAAFagv-tmrQ3943.jpg)
![Engineering Basic Mechanics Ⅱ Dynamics 工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle_第4頁(yè)](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGaEL12AaTGoAAFagv-tmrQ3944.jpg)
![Engineering Basic Mechanics Ⅱ Dynamics 工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件 Chapter 9 dAlembert Principle and Virtual Displacement Principle_第5頁(yè)](http://file4.renrendoc.com/view4/M02/12/0D/wKhkGGaEL12AaTGoAAFagv-tmrQ3945.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter9d’AlembertPrincipleandVirtualDisplacementPrinciple§9.4Constraint,virtualdisplacement,virtualwork§9.5Principleofvirtualdisplacement§9.1InertialForceandd’AlembertPrincipleofaParticle§9.2d’AlembertPrincipleofaSystemofParticles§9.3ReductionofaSystemofInertialForcesofaRigidBodyMainContentsInthischapter,wewilldiscussd’Alembertprinciple,itprovidesageneralmethodtosolvethekineticproblemofaparticleandasystemofparticles,themethodisthatthemethodsofstaticsareappliedtosolvekineticsproblems,thuskineticproblemscanbetransformedformallytoanequivalentstaticproblems,theycanbesolvedbytheoremofequilibrium.Thusthismethodiscalledthekinetic-staticmethod.Applyingthekinetic-staticmethodwecandeterminethemotion,forexampleaccelerationangularacceleration;canalsodeterminetheforce.D’Alembert’sPrincipleApplyingNewtonsecondlaw,wehave§9.1Inertialforceandd’AlembertprincipleofaparticleAssumingmassofaparticleis,accelerateis,activeforceactingontheparticleis,constraintforceis,showninfigure.AboveequationistransposedandwrittenasMaking
Wehave
hasthedimensionofforce,iscalledtheinertialforceofparticle:itsmagnitudeisequaltotheproductofmassandaccelerationofparticle,itsdirectioniscontrarytothedirectionofparticleacceleration.Theactiveforce,constraintforceandvirtualinertialforceactingontheparticlecomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofaparticle.OlθExamole
9-1§9.1Inertialforceandd’AlembertprincipleofaparticleShowninfigure,aconicalpendulum.Aballofmassm=0.1kgtiesaropeoflengthl=0.3m,oneendoftheropetiestoafixedpointO,andtheanglewiththeleadstraightlineisθ=60o.Ifthesmallballmakeuniformcircularmotioninthehorizontalplane,determinethevelocityoftheballvandthemagnitudeoftensionFoftherope.OlθenetebmgF*Example9-1FSolution:choosethesmallballastheparticletostudy.Theparticlemakesuniformcircularmotion,onlyhavenormalacceleration,theforcesactingontheparticleincludesgravitymg,pullingforceFofropeandnormalinertialforceF*,showninfigure.Accordingtod’Alembertprinciple,thethreeforcescomposedformallyequilibratedsystem,thatisTakingtheprojectionformulaofaboveequationinnaturalaxis,wehave:§9.1InertialforceandD’Alembert’sprincipleofaparticleExample
9-1OlθenetebmgF*FSolutionis:§9.1InertialforceandD’Alembert’sprincipleofaparticleAssumingssystemofparticlescomposedofnparticles,massofanyparticleiis,
accelerationis,allforcesactingontheparticleisdividedintoresultantforceofactiveforce,resultantforceofconstraintforce,theparticleisimaginarilyplusitsinertialforce,accordingtod’Alembertprincipleofaparticle,wehaveAboveequationshows,theactiveforce,constraintforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofasystemofparticles.Thisshows,externalforce,internalforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces.§9.1InertialforceandD’Alembert’sprincipleofaparticleAllforcesactingtheithparticlearedividedintoresultantforceofexternalforce,
resultantforceofinternalforce,andaboveequationcanbewrittenasBystaticsweknowthatnecessaryandsufficientconditionofequilibriumofspacialgeneralforcesystemisthattheprincipalvectoroftheforcesystemandtheprincipalmomentaboutanypointisequaltozero,thatisAboveequationshows,externalforceactingonsystemofparticlesandinertialforcevirtualaddingoneveryparticlecomposeformallyequilibratedsystemofforces,thisisanotherrepresentationofd’Alembertprincipleofasystemofparticles.§9.2D’Alembert’sprincipleofasystemofparticlesSinceInternalforcesofthesystemofparticlesalwaysexistinpairs
,
andisequalinmagnitudeandoppositeindirection,andcollinear,
thenwehaveand
,henceInstatics,
iscalledtheprincipalvector,
istheprincipalmomentaboutpointO,nowiscalledtheprincipalvectorofinertialforcesystem,
istheprincipalmomentofinertialforcesystemaboutpointO.AccordingtoD’Alembert’sprincipleofasystemofparticles,thisisformallyaequilibratedsystemofforces,
hencewecanapplymethodofstaticsforsolvingvariousequilibratedforcesystemtosolvekineticproblem.§9.2D’Alembert’sprincipleofasystemofparticlesOABrExample
9-2Showninfigure,theradiusofpulleyisr,massmuniformlydistributedintherim,canrotatearoundthehorizontalaxis.Bothendsofthesoftropeacrosstherimhangheavybodyofmass
m1andm2,andm1>m2.Neglectweightofrope,thereisnorelativeslidingbetweenropeandpulley,neglectbearingfriction.Determinetheaccelerationofheavybody.§9.2D’Alembert’sprincipleofasystemofparticlesOABryExample
9-2aam1gmgm2gFNSolution:choosepulleyandthetwoheavybodiesasthesystemofparticlestobestudied.Theexternalforcesactingonthesystemincludegravitym1g,m2g,mgandbearingconstraintforces
FN.Eachparticleofthesystemisvirtuallyaddedinertialforce,wecanapplyd’Alembertprinciple.Weknowm1>m2,thenthedirectionofaccelerationaofheavybodyshowninfigure.Thedirectionofinertialforceofheavybodyisoppositetothedirectionofaccelerationa,magnitudearerespectively:§9.2D’Alembert’sprincipleofasystemofparticlesorExample
9-2OABraam1gmgm2gFNymiApplyingequationofmomentofforceaboutrotatingaxis,weobtain
§9.2D’Alembert’sprincipleofasystemofparticlesMassofeachpointonpulleyedgeismi,magnitudeoftangentialinertialforceis,directionisalongtherimtangentline,pointasshowninfigure.Whenthereisnorelativeslidingbetweenropeandpulley,;magnitudeofnormalinertialforceis,directionisalongradiusanddeparturefromthecenter.
sinceSolutionisExample
9-2OABraam1gmgm2gFNymi§9.2D’Alembert’sprincipleofasystemofparticles§9.3ReductionofasystemofinertialforcesofarigidbodyThisexpressionisestablishedaboutanymotionofanysystemofparticles,alsoappliestotherigidbodythatmakestranslation,fixedaxisrotationandplanemotion.Inthefollowingweintroducereductionofasystemofinertialforcesinthreecommoncases.Applyingd’Alembertprincipleofasystemofparticlestosolvekineticproblemofthesystem,
eachparticleofthesystemisaddeditsinertialforce,
theseinertialforcesformasystemofforces,
whichiscalledinertialforcesystem.Ifusingsimplifiedtheoryofforcesysteminstatics,
todeterminetheprincipalvectorandtheprincipalmomentintheinertialforcesystem,
substituteinertialforceaddedtoeachparticlewhenwespecificallysolve,
itwillbringconveniencetosolveproblem.Inthefollowingweonlydiscussreductionofinertialforcesystemintranslationofrigidbody,
fixedaxisrotationandplanemotion.representstheprinciplevectorofinertialforcesystem,
accordingtoandtheoremofmotionofmasscenter,
wehave1.RigidbodyintranslationRigidbodyisintranslation,
ateveryinstantaccelerationofanyparticleiinrigidbodyisthesameasaccelerationofmasscenter,
here,
inertialforcesystemofrigidbodydistributesinfigure,
arbitrarilychooseapointOassimplifiedcenter,
representstheprincipalmoment,
wehaveWhenrigidbodyisintranslation,theprinciplemomentofinertialforceaboutarbitrarypointisgenerallynotequaltozero.Ifchoosemasscenterassimplifiedcenter,itsprincipalmomentiszero,simplifiedasaresultantforce.Henceweconclude:inertialforcesystemoftranslationalrigidbodycanbesimplifiedtoresultantforcethroughmasscenter,itsmagnitudeisequaltotheproductofmassofrigidbodyandacceleration,thedirectionofresultantforceisoppositetothedirectionofacceleration.§9.3ReductionofasystemofinertialforcesofarigidbodyWhere,
isradiusvectorfrommasscenterCtosimplifiedcenterO,theprinciplemomentisgenerallynotequaltozero.IfchoosemasscenterCassimplifiedcenter,representtheprincipalmoment,then,
wehave2.Fixedaxisrotationofarigidbody§9.3ReductionofasystemofinertialforcesofarigidbodyInertialforceofparticlecanbedividedintotangentialinertialforceandnormalinertialforce
,andtheirdirectionsshowninfigure,magnitudearerespectivelyWhenrigidbodyisinfixedaxisrotation,assumingangularvelocityofrigidbodyis,angularaccelerationis,massofanyparticleinrigidbodyis,thedistancetorotatingaxisis,theninertialforceofanyparticleinrigidbodyis.Forsimplicity,arbitrarilychooseapointO
onrotatingaxisassimplifiedcenter,establishrectangularcoordinatesystemshowninfigure,coordinatesoftheparticleisIftherigidbodyhasaplaneofmasssymmetryandtheplaneisverticaltotherotatingaxisz,andthesimplifiedcenter
ischosentobetheintersectionpointofthisplanewiththerotatingaxisz,thenMomentofinertialforcesystemaboutaxisz
is
Sincenormalinertialforceofeachparticlepassthroughaxisz,
wehave§9.3Reductionofasystemofinertialforcesofarigidbody3.Rigidbodyinplanemotion(paralleltothemasssymmetryplane)§9.3ReductionofasystemofinertialforcesofarigidbodyInengineering,rigidbodyinplanemotionoftenhasmasssymmetryplane,andparalleltotheplanemotion,nowonlyinthiscasewediscussreductionofasystemofinertialforces.Similartorotationofrigidbodyaroundfixedaxis,rigidbodyisinplanemotion,spaceforcesystemcomposedofinertialforcesofeachparticle,canbesimplifiedtoplaneforcesysteminthemasssymmetryplane.Chooseplanefigureinthemasssymmetrypaneasshowninfigure.Bykinematicsweknow,motionofplanefigurecanbedividedintotranslationwiththebasepointandrotationaroundthebasepoint.NowchoosemasscenterCasthebasepoint,assumingtheaccelerationofmasscenteris,angularvelocityofrotationaroundmasscenteris,angularaccelerationis,similartorotationofrigidbodyaroundfixedaxis,nowtheprincipalmomentofreductionofasystemofinertialforcestomasscenterCisWhere
isthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplane.§9.3ReductionofasystemofinertialforcesofarigidbodySoweconclude:
rigidbodyhavethemasssymmetryplane,
whenmovingparalleltotheplane,
asystemofinertialforcesofrigidbodyisreducedtoaforceandacoupleintheplane.Theforcepassesthroughmasscenter,
itsmagnitudeisequaltotheproductofmassofrigidbodyandaccelerationofmasscenter,
itsdirectionisoppositetothedirectionofaccelerationofmasscenter;
momentofthecoupleisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplaneandangularacceleration,
rotatingdirectionisoppositetoangularacceleration.xyωm1gm2gCOhφExample
9-3§9.3ReductionofasystemofinertialforcesofarigidbodyShowninfigure,massofstatorofelectricmotorism1,mountedonahorizontalbase.ThedistancebetweenrotatingaxisOandhorizontalplaneish,and
massofrotorism2,itsmasscenterisC,eccentricdistanceOC=e,whenmotionbegins,masscenterCisatthelowestposition.Rotorrotateswithconstantangularvelocityω,determinetheconstraintforceofthebaseactingontheelectricmotor.Example
9-3xyωm1gm2gCOhφFyFxMAF*Solution:choosethewholemotorasobjecttobestudied.Theforcesincludegravitym1gandm2g,constraintforceofbaseandgroundscrewactingontheelectricmotorsimplifiedtopointAasacoupleMandaforceF(showninfigureFxandFy).Thesystemofparticlesisaddedtoinertialforce.RotoruniformlyrotatesaboutfixedaxisOwithangularvelocityω,thesystemofinertialforceisreducedaforcethroughpointO,magnitudeisItsdirectionisoppositetoaccelerationaCofmasscenterC.SinceaCisalongOCandpointstocenterO,
F*isalongOCanddepartsfrompointO.§9.3ReductionofasystemofinertialforcesofarigidbodyExample
9-3xyωm1gm2gCOhφFyFxMAF*Accordingtod’Alembertprinciple,activeforce,constraintforceandinertialforceactingonthesystemofparticlesformallycomposeequilibriumforcesystem,wecanwriteequilibriumequation:Sincerotoruniformlyrotates,φ=ωt
,substitutingitintoaboveequations,weobtain:§9.3ReductionofasystemofinertialforcesofarigidbodymAgmgFABCExample
9-4MassofhomogeneousdiscismA,radiusisr.Lengthofslenderrodisl=2r,massism.PointAofrodendhingedsmoothlytowheelcenter,showninfigure.IfpointAsufferedahorizontalpullingforceF,makewheelrollalonghorizontalplane.DeterminethemagnitudeofforceF,whenendBofrodjustlefttheground.Inordertoensurepurerolling,determinecoefficientofstaticslidingfrictionbetweenthewheelandtheground.§9.3ReductionofasystemofinertialforcesofarigidbodyBCmgAF*CFAxFAyamAgmgFABCExample
9-4F*AF*CM*Accordingtokinetic-staticmethod,wewriteequationSolutionis
§9.3ReductionofasystemofinertialforcesofarigidbodySolution:whenslenderrodleftthegrounditisstillintranslation,andconstraintforceofgroundisequaltozero,assumingitsaccelerationisa.Chooserodasobjecttobestudied,theforcesactingonrodandaddinginertialforceasshowninfigure,where
Theforcesactingonthewholesystemandaddinginertialforcesasshowninfigure,whereAccordingtoequationweobtainmAgmgFABCF*AF*CM*FNFsExample
9-4Frictionofground
Inordertodeterminefriction,choosethewheelasobjecttobestudied.Solutionis
§9.3ReductionofasystemofinertialforcesofarigidbodyApplyingequationweobtainAmAgFFNF*AM*FsExample
9-4Thus,coefficientoffrictionofground§9.3ReductionofasystemofinertialforcesofarigidbodyAFNF*AF*CmAgmgFBCM*FsThenchoosethewholesystemasobjecttobestudied,
byequation,weobtainmAgFAFNF*AM*FsPrincipleofvirtualdisplacement:§9.4Constraint,virtualdisplacement,virtualworkToestablishtheequilibriumconditionsforthesystemofmasspointsindependentoftheNewtonianmechanicssystem.Newtoniansystemofmechanics:Vectormechanics,whichdescribesmechanicalquantitiesthatarerepresentedbyvectors,suchasvectordiameter,velocity,acceleration,angularvelocityandangularacceleration.Analyticalmechanicssystem:Scalarmechanics,whichdescribesphysicalquantitiesasscalars,suchasgeneralizedcoordinates,energyandwork.Theprincipleofvirtualdisplacementisbasedonanalyticalmechanicstoestablishthesufficientconditionsfortheequilibriumofthesystem,whichhasawidersignificancethantheequilibriumconditionsestablishedbyNewtonianmechanics.1.Constraintsandtheirclassification(1)Therestrictionsonthemotionofanobjectarecalledconstraints.Expressedasamathematicalequation,whichiscalledconstraintequation.Forexample:xφOyM(x,y)ιPlanependulumconstraintequation§9.4Constraint,virtualdisplacement,virtualwork2.Classificationofconstraints§9.4Constraint,virtualdisplacement,virtualworkGeometricconstraint:restrictonlythegeometricpositionofaparticle.Motionconstraint:theconstraintequationcontainsthederivativeoftheparticlecoordinates(withrespecttotime).Steadyconstraint:theconstraintisindependentoftime,i.e.,theconstraintequationdoesnotcontaintimet.Unsteadyconstraint:
theconstraintisdependentoftime,i.e.,thetimetisincludedintheconstraintequation.Holonomicconstraint:
includinggeometricconstraintsandmotionconstraintsthatcanbereducedtogeometricconstraints.Nonholonomicconstraint:amotionconstraintcannotbereducedtoageometricconstraint.3.
VirtualdisplacementAtacertaininstant,anyinfinitesimaldisplacementthattheparticlesystemmayachieveundertheconditionsallowedbyconstraintsiscalledthevirtualdisplacementoftheparticlesystem(atthatinstant).Thevirtualdisplacementcanbeeitheralineardisplacementoranangulardisplacement.Usually,thevariationalsymbolδisusedtorepresentvirtualdisplacement.Inthefollowingtwoexamples,δφ,δrAand
δrBareallvirtualdisplacement.xφOyMδφδs(+)xBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualwork4.Differencebetweenvirtualdisplacementandrealdisplacement
Realdisplacementisthetruedisplacementachievedbyaparticlesystemwithi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村耕地轉(zhuǎn)讓合同范例
- 2025年度集裝箱運(yùn)輸合同環(huán)保責(zé)任履行規(guī)范
- 農(nóng)村股權(quán)轉(zhuǎn)讓合同范例
- 倉(cāng)儲(chǔ)物流顧問(wèn)合同范例
- 公司勞動(dòng)聘用合同范本
- 一般農(nóng)村房屋租賃合同范本
- 2025年度公司總裁任期目標(biāo)考核聘用合同
- 2025年度公司拆伙后員工安置協(xié)議范本
- 民政補(bǔ)助申請(qǐng)書(shū)
- 醫(yī)院感染及其危害
- 2025年三人合伙投資合作開(kāi)店合同模板(三篇)
- 安徽省招生考試數(shù)學(xué)試卷
- 2024全國(guó)各省高考詩(shī)歌鑒賞真題及解析
- 高考日語(yǔ)閱讀理解練習(xí)2篇-高考日語(yǔ)復(fù)習(xí)
- 印刷基礎(chǔ)知識(shí)培訓(xùn)資料
- NB/T 11536-2024煤礦帶壓開(kāi)采底板井下注漿加固改造技術(shù)規(guī)范
- 2024-2025學(xué)年人教版五年級(jí)(上)英語(yǔ)寒假作業(yè)(一)
- 【課件】九年級(jí)化學(xué)下冊(cè)(人教版2024)-【新教材解讀】義務(wù)教育教材內(nèi)容解讀課件
- GA/T 761-2024停車庫(kù)(場(chǎng))安全管理系統(tǒng)技術(shù)要求
- 2025屆貴州省六盤水市第二中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析
評(píng)論
0/150
提交評(píng)論