版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖像大致為()A. B.C. D.2.某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.3.甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.54.在三角形中,,,求()A. B. C. D.5.已知的面積是,,,則()A.5 B.或1 C.5或1 D.6.若點(diǎn)(2,k)到直線(xiàn)5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或7.設(shè),,則的值為()A. B.C. D.8.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.549.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.10.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.11.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間12.設(shè)拋物線(xiàn)上一點(diǎn)到軸的距離為,到直線(xiàn)的距離為,則的最小值為()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是___________.14.已知,記,則的展開(kāi)式中各項(xiàng)系數(shù)和為_(kāi)_________.15.若函數(shù)為偶函數(shù),則________.16.已知,如果函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是____________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.18.(12分)已知橢圓:的兩個(gè)焦點(diǎn)是,,在橢圓上,且,為坐標(biāo)原點(diǎn),直線(xiàn)與直線(xiàn)平行,且與橢圓交于,兩點(diǎn).連接、與軸交于點(diǎn),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.19.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線(xiàn)與曲線(xiàn)都相切,我們稱(chēng)直線(xiàn)為曲線(xiàn)、的公切線(xiàn),證明:曲線(xiàn)與總存在公切線(xiàn).20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.21.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專(zhuān)家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)?,通過(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)?,則,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱(chēng),排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.2、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.3、B【解析】根據(jù)題意滿(mǎn)足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.4、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.5、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.6、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線(xiàn)的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線(xiàn)的距離.7、D【解析】
利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進(jìn)而求得的值,最后利用正切差角公式求得結(jié)果.【詳解】,,,,,,,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)求值問(wèn)題,涉及到的知識(shí)點(diǎn)有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.8、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.9、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡(jiǎn),然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問(wèn)題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)椋谏蠟闇p函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.11、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題12、A【解析】
分析:題設(shè)的直線(xiàn)與拋物線(xiàn)是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線(xiàn)的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線(xiàn)與拋物線(xiàn)是相離的.由,而為到準(zhǔn)線(xiàn)的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線(xiàn)的距離,故的最小值為,故選A.點(diǎn)睛:拋物線(xiàn)中與線(xiàn)段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線(xiàn)的幾何性質(zhì)把動(dòng)線(xiàn)段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線(xiàn)或焦點(diǎn)的距離來(lái)求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出函數(shù)的圖象及直線(xiàn),如下圖所示,因?yàn)楹瘮?shù)有個(gè)不同的零點(diǎn),所以由圖象可知,,,所以.14、【解析】
根據(jù)定積分的計(jì)算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計(jì)算,可得,令,則,即的展開(kāi)式中各項(xiàng)系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項(xiàng)式定理的應(yīng)用,其中解答中根據(jù)定積分的計(jì)算和二項(xiàng)式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15、【解析】
二次函數(shù)為偶函數(shù)說(shuō)明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題16、【解析】
首先把零點(diǎn)問(wèn)題轉(zhuǎn)化為方程問(wèn)題,等價(jià)于有三個(gè)零點(diǎn),兩側(cè)開(kāi)方,可得,即有三個(gè)零點(diǎn),再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個(gè)零點(diǎn),即零點(diǎn)有,顯然,則有,可得,即有三個(gè)零點(diǎn),不妨令,對(duì)于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對(duì)于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)若有兩個(gè)零點(diǎn),則有,綜上可知,若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)的零點(diǎn),恰當(dāng)?shù)拈_(kāi)方,轉(zhuǎn)化為函數(shù)有零點(diǎn)問(wèn)題,注意恰有三個(gè)零點(diǎn)條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)?,所以,,,或,或,因?yàn)?,所以所以;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線(xiàn)的方程,代入橢圓方程,求得直線(xiàn)和的方程,求得和的橫坐標(biāo),表示出,根據(jù)韋達(dá)定理即可求證為定值.【詳解】(1)因?yàn)?,由橢圓的定義得,,點(diǎn)在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線(xiàn)的斜率為,設(shè)直線(xiàn)的方程為,聯(lián)立方程組,消去,整理得,所以,,直線(xiàn)的直線(xiàn)方程為,令,則,同理,所以:,代入整理得,所以為定值.【點(diǎn)睛】本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線(xiàn)和橢圓的位置關(guān)系,考查橢圓中的定值問(wèn)題,屬于中檔題.19、(1);(2)見(jiàn)解析.【解析】
(1)求出導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫(xiě)出切線(xiàn)方程,問(wèn)題轉(zhuǎn)化為證明兩直線(xiàn)重合,只需滿(mǎn)足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線(xiàn)方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線(xiàn)方程為……②若存在,使①②成為同一條直線(xiàn),則曲線(xiàn)與存在公切線(xiàn),由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線(xiàn).【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問(wèn)題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.20、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)求得的導(dǎo)函數(shù),對(duì)分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類(lèi)討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1)見(jiàn)解析;(2)(i)(ii)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),分類(lèi)討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個(gè)零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過(guò)轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)Mini LED行業(yè)開(kāi)拓第二增長(zhǎng)曲線(xiàn)戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)搬家行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)風(fēng)電設(shè)備行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025年網(wǎng)絡(luò)工程師工作計(jì)劃(共5篇)
- 廣東省2024屆高三下學(xué)期三模英語(yǔ)試題
- 高端智能專(zhuān)用車(chē)制造項(xiàng)目環(huán)境影響報(bào)告書(shū)批前
- 年產(chǎn)100萬(wàn)立方建筑用砂巖新建項(xiàng)目資金申請(qǐng)報(bào)告
- 二年級(jí)數(shù)學(xué)計(jì)算題專(zhuān)項(xiàng)練習(xí)1000題匯編集錦
- 2023屆江蘇省蘇州市高三二??记澳M地理卷(一)附答案
- 手工制瓷技藝2
- 對(duì)外投資合作國(guó)別(地區(qū))指南 -泰國(guó)
- 2023年-2024年崗位安全教育培訓(xùn)試題及答案通用
- 口腔修復(fù)學(xué)(全套課件290p)課件
- 小學(xué)生心理問(wèn)題的表現(xiàn)及應(yīng)對(duì)措施【全國(guó)一等獎(jiǎng)】
- 小學(xué)生科普人工智能
- 初中學(xué)段勞動(dòng)任務(wù)清單(七到九年級(jí))
- 退耕還林監(jiān)理規(guī)劃
- GB/T 1335.2-2008服裝號(hào)型女子
- GB 31247-2014電纜及光纜燃燒性能分級(jí)
- DCC20網(wǎng)絡(luò)型監(jiān)視與報(bào)警
- 項(xiàng)目實(shí)施路徑課件
評(píng)論
0/150
提交評(píng)論