2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題含解析_第1頁
2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題含解析_第2頁
2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題含解析_第3頁
2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題含解析_第4頁
2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省深圳市深圳實驗學校初中部聯考九年級數學第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°2.如圖,⊙O外接于△ABC,AD為⊙O的直徑,∠ABC=30°,則∠CAD=()A.30° B.40° C.50° D.60°3.在Rt△ABC中,∠C=90°,tanA=,則sinA的值為()A. B. C. D.4.下列方程中沒有實數根的是()A. B.C. D.5.用配方法解方程時,可將方程變形為()A. B. C. D.6.下列命題正確的是()A.長度為5cm、2cm和3cm的三條線段可以組成三角形B.的平方根是±4C.是實數,點一定在第一象限D.兩條直線被第三條直線所截,同位角相等7.如圖,在平面直角坐標系中,正方形OABC的頂點O、B的坐標分別是(0,0),(2,0),則頂點C的坐標是()A.(1,1) B.(﹣1,﹣1) C.(1,﹣1) D.(﹣1,1)8.中,,,,的值為()A. B. C. D.29.如圖,四邊形ABCD內接于,它的一個外角,分別連接AC,BD,若,則的度數為()A. B. C. D.10.如圖,一次函數y=ax+a和二次函數y=ax2的大致圖象在同一直角坐標系中可能的是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在中,.動點以每秒個單位的速度從點開始向點移動,直線從與重合的位置開始,以相同的速度沿方向平行移動,且分別與邊交于兩點,點與直線同時出發(fā),設運動的時間為秒,當點移動到與點重合時,點和直線同時停止運動.在移動過程中,將繞點逆時針旋轉,使得點的對應點落在直線上,點的對應點記為點,連接,當時,的值為___________.12.反比例函數的圖像的兩支曲線分別位于第二、四象限內,則應滿足的條件是_________.13.如圖,在矩形ABCD中,,對角線AC,BD交于點O,點M,N分別為OB,OC的中點,則的面積為____________.14.拋物線的頂點坐標是______________.15.如圖,是⊙的直徑,,點是的中點,過點的直線與⊙交于、兩點.若,則弦的長為__________.16.如圖,在?ABCD中,AD=7,AB=2,∠B=60°.E是邊BC上任意一點,沿AE剪開,將△ABE沿BC方向平移到△DCF的位置,得到四邊形AEFD,則四邊形AEFD周長的最小值為_____.17.如圖,將半徑為4cm的圓折疊后,圓弧恰好經過圓心,則折痕的長為_____.18.拋物線y=4x2﹣3x與y軸的交點坐標是_____.三、解答題(共66分)19.(10分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)20.(6分)小紅想利用陽光下的影長測量學校旗桿AB的高度.如圖,她在地面上豎直立一根2米長的標桿CD,某一時刻測得其影長DE=1.2米,此時旗桿AB在陽光下的投影BF=4.8米,AB⊥BD,CD⊥BD.請你根據相關信息,求旗桿AB的高.21.(6分)如圖,O是所在圓的圓心,C是上一動點,連接OC交弦AB于點D.已知AB=9.35cm,設A,D兩點間的距離為cm,O,D兩點間的距離為cm,C,D兩點間的距離為cm.小騰根據學習函數的經驗,分別對函數,隨自變量的變化而變化的規(guī)律進行了探究.下面是小騰的探究過程,請補充完整:(1)按照下表中自變量的值進行取點、畫圖、測量,分別得到了,與的幾組對應值:/cm0.001.002.003.004.005.006.007.108.009.35/cm4.933.992.281.701.592.042.883.674.93/cm0.000.941.832.653.233.342.892.051.260.00(2)①在同一平面直角坐標系中,描出表中各組數值所對應的點(,),(,),并畫出(1)中所確定的函數,的圖象;②觀察函數的圖象,可得cm(結果保留一位小數);(3)結合函數圖象,解決問題:當OD=CD時,AD的長度約為cm(結果保留一位小數).22.(8分)在平面直角坐標系中,直線與雙曲線交于點A(2,a).(1)求與的值;(2)畫出雙曲線的示意圖;(3)設點是雙曲線上一點(與不重合),直線與軸交于點,當時,結合圖象,直接寫出的值.23.(8分)某校為了解全校學生主題閱讀的情況,隨機抽查了部分學生在某一周主題閱讀文章的篇數,并制成下列統(tǒng)計圖表.請根據統(tǒng)計圖表中的信息,解答下列問題:(1)求被抽查的學生人數和m的值;(2)求本次抽查的學生文章閱讀篇數的中位數和眾數;(3)若該校共有1200名學生,根據抽查結果,估計該校學生在這一周內文章閱讀的篇數為4篇的人數。24.(8分)如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現測得,與的夾角分別為與,若點到地面的距離為,坐墊中軸處與點的距離為,求點到地面的距離(結果保留一位小數).(參考數據:,,)25.(10分)如圖,在正方形ABCD中,點M、N分別在AB、BC邊上,∠MDN=45°.(1)如圖1,DN交AB的延長線于點F.求證:;(2)如圖2,過點M作MP⊥DB于P,過N作NQ⊥BD于,若,求對角線BD的長;(3)如圖3,若對角線AC交DM,DF分別于點T,E.判斷△DTN的形狀并說明理由.26.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD⊥DC于D,且AC平分∠DAB.延長DC交AB的延長線于點P.(1)求證:PC2=PA?PB;(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質;2.平角性質.2、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根據AD為⊙O的直徑,推出∠DCA=90°,最后根據直角三角形的性質即可推出∠CAD=90°-∠ADC,通過計算即可求出結果.【詳解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故選D.【點睛】本題主要考查圓周角定理,直角三角形的性質,角的計算,關鍵在于通過相關的性質定理推出∠ADC和∠DCA的度數.3、B【分析】由題意直接根據三角函數的定義進行分析即可求解.【詳解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假設BC=k,AC=2k,∴AB=k,∴sinA==.故選:B.【點睛】本題考查同角三角函數的計算,解題本題的關鍵是明確sinA等于對邊與斜邊的比.4、D【分析】分別計算出判別式△=b2?4ac的值,然后根據判別式的意義分別判斷即可.【詳解】解:A、△==5>0,方程有兩個不相等的實數根;B、△=32?4×1×2=1>0,方程有兩個不相等的實數根;C、△=112?4×2019×(?20)=161641>0,方程有兩個不相等的實數根;D、△=12?4×1×2=?7<0,方程沒有實數根.故選:D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac的意義,當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.5、D【分析】配方法一般步驟:將常數項移到等號右側,左右兩邊同時加一次項系數一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.6、C【分析】根據三角形三邊關系、平方根的性質、象限的性質、平行線的性質進行判斷即可.【詳解】A.長度為5cm、2cm和3cm的三條線段不可以組成三角形,錯誤;B.的平方根是±2,錯誤;C.是實數,點一定在第一象限,正確;D.兩條平行線被第三條直線所截,同位角相等,錯誤;故答案為:C.【點睛】本題考查了判斷命題真假的問題,掌握三角形三邊關系、平方根的性質、象限的性質、平行線的性質是解題的關鍵.7、C【詳解】解:由圖可知,點B在第四象限.各選項中在第四象限的只有C.故選C.8、C【分析】根據勾股定理求出斜邊AB的值,在利用余弦的定義直接計算即可.【詳解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故選:C.【點睛】本題主要考查銳角三角函數的定義,解決此類題時,要注意前提條件是在直角三角形中,此外還有熟記三角函數是定義.9、A【分析】先根據圓內接四邊形的性質得出∠ADC=∠EBC=65°,再根據AC=AD得出∠ACD=∠ADC=65°,故可根據三角形內角和定理求出∠CAD=50°,再由圓周角定理得出∠DBC=∠CAD=50°.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故選:A.【點睛】本題考查了圓內接四邊形的性質,以及圓周角定理的推論,熟知圓內接四邊形的對角互補是解答此題的關鍵.也考查了等腰三角形的性質以及三角形內角和定理.10、B【分析】根據a的符號分類,當a>0時,在A、B中判斷一次函數的圖象是否相符;當a<0時,在C、D中判斷一次函數的圖象是否相符.【詳解】解:①當a>0時,二次函數y=ax2的開口向上,一次函數y=ax+a的圖象經過第一、二、三象限,A錯誤,B正確;②當a<0時,二次函數y=ax2的開口向下,一次函數y=ax+a的圖象經過第二、三、四象限,C錯誤,D錯誤.故選:B.【點睛】此題主要考查了二次函數與一次函數的圖象,利用二次函數的圖象和一次函數的圖象的特點求解.二、填空題(每小題3分,共24分)11、【分析】由題意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,進而求得EF的長;如圖,由點P的對應點M落在EF上,點F的對應點為點N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,過N做NG⊥BC,可得EN=BN,最后利用三角函數的關系建立方程求解即可;【詳解】解:設運動的時間為秒時;由題意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如圖:過N做NG⊥BC,垂足為G∵將繞點逆時針旋轉,使得點的對應點落在直線上,點的對應點記為點,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案為.【點睛】本題考查了相似三角形的判定及性質的運用、三角函數值的運用、勾股定理的運用,靈活利用相似三角形的性質和勾股定理是解答本題的關鍵.12、【分析】根據反比例函數圖象所在的象限求得,然后得到的取值范圍即可.【詳解】∵反比例函數的圖象位于第二、四象限內,

∴,

則.故答案是:.【點睛】本題考查了反比例函數的圖象的性質,重點是比例系數k的符號.13、【分析】由矩形的性質可推出△OBC的面積為△ABC面積的一半,然后根據中位線的性質可推出△OMN的面積為△OBC面積的,即可得出答案.【詳解】∵四邊形ABCD為矩形∴∠ABC=90°,BC=AD=4,O為AC的中點,∴又∵M、N分別為OB、OC的中點∴MN=BC,MN∥BC∴△OMN∽△OBC∴∴故答案為:.【點睛】本題考查了矩形的性質,中位線的判定與性質,相似三角形的判定與性質,解題的關鍵是熟練掌握相似三角形的面積比等于相似比的平方.14、(0,-1)【分析】拋物線的解析式為:y=ax2+k,其頂點坐標是(0,k),可以確定拋物線的頂點坐標.【詳解】拋物線的頂點坐標是(0,-1).15、【分析】連接OD,作OE⊥CD于E,由垂徑定理得出CE=DE,證明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【詳解】連接OD,作OE⊥CD于E,如圖所示:則CE=DE,∵AB是⊙O的直徑,AB=4,點M是OA的中點,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案為.【點睛】本題考查了垂徑定理、勾股定理、等腰直角三角形的判定與性質;熟練掌握垂徑定理,由勾股定理求出DE是解決問題的關鍵.16、20【解析】當AE⊥BC時,四邊形AEFD的周長最小,利用直角三角形的性質解答即可.【詳解】當AE⊥BC時,四邊形AEFD的周長最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四邊形AEFD周長的最小值為:14+6=20,故答案為:20.【點睛】本題考查平移的性質,解題的關鍵是確定出當AE⊥BC時,四邊形AEFD的周長最?。?7、4cm【分析】連接AO,過O作OD⊥AB,交于點D,交弦AB于點E,根據折疊的性質可知OE=DE,再根據垂徑定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的長,進而可求出AB的長.【詳解】解:如圖,連接AO,過O作OD⊥AB,交于點D,交弦AB于點E,∵折疊后恰好經過圓心,∴OE=DE,∵⊙O的半徑為4cm,∴OE=OD=×4=2(cm),∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE===2(cm).∴AB=2AE=4cm.故答案為:4cm.【點睛】本題考查了垂徑定理,翻折變換的性質以及勾股定理,正確作出輔助線是解題的關鍵.18、(0,0)【解析】根據y軸上的點的特點:橫坐標為0.可代入求得y=0,因此可得拋物線y=4x2-3x與y軸的交點坐標是(0,0).故答案為(0,0).三、解答題(共66分)19、路燈的高CD的長約為6.1m.【解析】設路燈的高CD為xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴,解得x=6.125≈6.1.∴路燈的高CD約為6.1m.20、旗桿AB的高為8m.【分析】證明△ABF∽△CDE,然后利用相似比計算AB的長.【詳解】∵AB⊥BD,CD⊥BD,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即,∴AB=8(m).答:旗桿AB的高為8m.【點睛】本題考查了平行投影:由平行光線形成的投影是平行投影,如物體在太陽光的照射下形成的影子就是平行投影.平行投影中物體與投影面平行時的投影是全等的.21、(2)①見解析;②3.1(3)6.6cm或2.8cm【分析】(2)①根據畫函數圖象的步驟:描點、連線即可畫出函數圖象;②根據題意,利用圖象法解答即可;(3)根據題意:就是求當時對應的x的值,可利用函數圖象,觀察兩個函數的交點對應的x的值即可.【詳解】解:(2)①如圖所示:②觀察圖象可得:當x=2時,y1=3.1,∴m=3.1;故答案為:3.1;(3)當OD=CD時,即y1=y2時,如圖,x約為6.6或2.8,即AD的長度約為6.6cm或2.8cm.故答案為:6.6cm或2.8cm.【點睛】本題是圓與函數的綜合題,主要考查了圓的有關知識和動點問題的函數圖象,熟練運用圖象法、靈活應用數形結合的思想是解題的關鍵.22、(1),;(2)示意圖見解析;(3)6,.【分析】(1)把點A(2,a)代入直線解析式求出a,再把A(2,a)代入雙曲線求出k即可;(2)先列表,再描點,然后連線即可;(3)利用數形結思想觀察圖形即可得到答案.【詳解】(1)∵直線過點,∴.又∵雙曲線()過點A(2,2),∴.(2)列表如下:x…-4-2-1124…y…-1-2-4421…描點,連線如下:(3)6,.①當點P在第一象限時,如圖,過點A作AC⊥y軸于點C,過點P作PD⊥y軸于點D,則△BDP∽△BCA,∴=∵點A(2,2),∴AC=2,OC=2.∴PD=1.即m=1,當m=1時,n=.即OD=4,∴CD=OD-OC=2.∴BD=CD=2.∴OB=BD+OD=6即b=6.②當點p在第三象限時,如圖,過點A作AC⊥y軸于點C,過點P作PD⊥y軸于點D,則△BDP∽△BCA,∴=∵點A(2,2),∴AC=2,OC=2.∴PD=1.∵點p在第三象限,∴m=-1,當m=-1時,n=-4,∴OD=4,∵BD=OD-OB=4+b,CD=OC+OB=2-b,∴解得,b=-2.綜上所述,b的值為6或-2.【點睛】本題考查了一次函數與反比例函數的綜合,掌握相關知識是解題的關鍵.23、(1)50,12;(2)5,4;(3)336.【分析】(1)先由6篇的人數及其所占百分比求得總人數,總人數減去其他篇數的人數求得m的值;(2)根據中位數和眾數的定義求解;(3)用總人數乘以樣本中4篇的人數所占比例即可得.【詳解】解:(1)被調查的總人數為8÷16%=50人,m=50-(10+14+8+6)=12;(2)由于共有50個數據,其中位數為第25、26個數據的平均數,而第25、26個數據均為5篇,所以中位數為5篇,出現次數最多的是4篇,所以眾數為4篇;(3)估計該校學生在這一周內文章閱讀的篇數為4篇的人數為人.【點睛】本題考查的是扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?4、66.7cm【分析】過點C作CH⊥AB于點H,過點E作EF垂直于AB延長線于點F,設CH=x,則AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的長,再由EF=BEsin68°=3.72根據點E到地面的距離為CH+CD+EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論