版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.順次連接平行四邊形四邊的中點所得的四邊形是()A.矩形 B.菱形 C.正方形 D.平行四邊形2.如圖,一農戶要建一個矩形花圃,花圃的一邊利用長為12m的住房墻,另外三邊用25m長的籬笆圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,花圃面積為80m2,設與墻垂直的一邊長為xm,則可以列出關于x的方程是()A.x(26-2x)=80 B.x(24-2x)=80C.(x-1)(26-2x)=80 D.x(25-2x)=803.生產季節(jié)性產品的企業(yè),當它的產品無利潤時就會及時停產.現(xiàn)有一生產季節(jié)性產品的企業(yè),其一年中獲得的利潤和月份之間的函數(shù)關系式為,則該企業(yè)一年中應停產的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月4.二次函數(shù)y=+2的頂點是()A.(1,2) B.(1,?2) C.(?1,2) D.(?1,?2)5.如圖是由4個大小相同的立方塊搭成的幾何體,這個幾何體的主視圖是()A. B. C. D.6.如圖,在?ABCD中,若∠A+∠C=130°,則∠D的大小為()A.100° B.105° C.110° D.115°7.在Rt△ABC中,AB=6,BC=8,則這個三角形的內切圓的半徑是()A.5 B.2 C.5或2 D.2或-18.如圖是二次函數(shù)圖像的一部分,直線是對稱軸,有以下判斷:①;②>0;③方程的兩根是2和-4;④若是拋物線上兩點,則>;其中正確的個數(shù)有()A.1 B.2 C.3 D.49.二次函數(shù)圖象如圖,下列結論:①;②;③當時,;④;⑤若,且,.其中正確的結論的個數(shù)有()A.1 B.2 C.3 D.410.如圖,在邊長為1的正方形組成的網格中,△ABC的頂點都在格點上,將△ABC繞點C順時針旋轉60°,則頂點A所經過的路徑長為()A.10π B.C.π D.π二、填空題(每小題3分,共24分)11.如果兩個相似三角形的相似比為1:4,那么它們的面積比為_____.12.方程的根是_____.13.若一組數(shù)據1,2,x,4的平均數(shù)是2,則這組數(shù)據的方差為_____.14.若關于的一元二次方程的一個根是,則的值是_________.15.在一只不透明的口袋中放入只有顏色不同的白色球3個,黑色球5個,黃色球n個,攪勻后隨機從中摸取一個恰好是白色球的概率為,則放入的黃色球數(shù)n=_________.16.如圖,PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為(度).17.在△ABC中,點D、E分別在AB、AC上,∠AED=∠B,若AE=2,△ADE的面積為4,四邊形BCED的面積為5,則邊AB的長為________.18.如圖,△ABC中,DE∥BC,,△ADE的面積為8,則△ABC的面積為______三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從B出發(fā),沿BC方向,以1cm/s的速度向點C運動,點Q從A出發(fā),沿AB方向,以2cm/s的速度向點B運動;若兩點同時出發(fā),當其中一點到達端點時,兩點同時停止運動,設運動時間為t(s)(t>0),△BPQ的面積為S(cm2).(1)t=2秒時,則點P到AB的距離是cm,S=cm2;(2)t為何值時,PQ⊥AB;(3)t為何值時,△BPQ是以BP為底邊的等腰三角形;(4)求S與t之間的函數(shù)關系式,并求S的最大值.20.(6分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉,.(1)在旋轉過程中①當、、三點在同一直線上時,求的長,②當、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉,點的位置由外的點轉到其內的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內自由旋轉,分別取、、的中點、、,連接、、、隨著繞點在平面內自由旋轉,的面積是否發(fā)生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)21.(6分)已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點D作DE⊥BC于點E,DE交AC于點F(1)如圖1,求證:BD平分∠ADF;(2)如圖2,連接OC,若AC=BC,求證:OC平分∠ACB;(3)如圖3,在(2)的條件下,連接AB,過點D作DN∥AC交⊙O于點N,若AB=3,DN=1.求sin∠ADB的值.22.(8分)某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.23.(8分)已知,關于的方程的兩個實數(shù)根.(1)若時,求的值;(2)若等腰的一邊長,另兩邊長為、,求的周長.24.(8分)如圖所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,動點P從點A開始,以1mm/S的速度沿邊AB向B移動(不與點B重合),動點Q從點B開始,以4m/s的速度沿邊BC向C移動(不與C重合),如果P、Q分別從A、B同時出發(fā),設運動的時間為xs,四邊形APQC的面積為ymm1.(1)寫出y與x之間的函數(shù)表達式;(1)當x=1時,求四邊形APQC的面積.25.(10分)如圖,已知四邊形ABCD是平行四邊形.(1)尺規(guī)作圖:按下列要求完成作圖;(保留作圖痕跡,請標注字母)①連AC;②作AC的垂直平分線交BC、AD于E、F;③連接AE、CF;(2)判斷四邊形AECF的形狀,并說明理由.26.(10分)如圖,在平面直角坐標系中,ΔABC的三個頂點坐標分別為A(-2,1)、B(-1,4)、C(-3,2).(1)畫圖:以原點為位似中心,位似比為1:2,在第二象限作出ΔABC的放大后的圖形(2)填空:點C1的坐標為,=.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】試題分析:順次連接四邊形四邊的中點所得的四邊形是平行四邊形,如果原四邊形的對角線互相垂直,那么所得的四邊形是矩形,如果原四邊形的對角線相等,那么所得的四邊形是菱形,如果原四邊形的對角線相等且互相垂直,那么所得的四邊形是正方形,因為平行四邊形的對角線不一定相等或互相垂直,因此得平行四邊形.故選D.考點:中點四邊形的形狀判斷.2、A【分析】設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,根據題意可列出方程.【詳解】解:設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,根據題意得:x(26-2x)=1.故選A.【點睛】本題考核知識點:列一元二次方程解應用題.解題關鍵點:找出相等關系,列方程.3、C【分析】根據解析式,求出函數(shù)值y等于2時對應的月份,依據開口方向以及增減性,再求出y小于2時的月份即可解答.【詳解】解:∵
∴當y=2時,n=2或者n=1.
又∵拋物線的圖象開口向下,
∴1月時,y<2;2月和1月時,y=2.
∴該企業(yè)一年中應停產的月份是1月、2月、1月.
故選:C.【點睛】本題考查二次函數(shù)的應用.能將二次函數(shù)由一般式化為頂點式并理解二次函數(shù)的性質是解決此題的關鍵.4、C【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標是(h,k),即可求出y=+2的頂點坐標.【詳解】解:∵二次函數(shù)y=+2是頂點式,∴頂點坐標為:(?1,2);故選:C.【點睛】此題主要考查了利用二次函數(shù)頂點式求頂點坐標,此題型是中考中考查重點,同學們應熟練掌握.5、A【分析】主視圖:從物體正面觀察所得到的圖形,由此觀察即可得出答案.【詳解】從物體正面觀察可得,左邊第一列有2個小正方體,第二列有1個小正方體.故答案為A.【點睛】本題考查三視圖的知識,主視圖是從物體的正面看得到的視圖.6、D【解析】根據平行四邊形對角相等,鄰角互補即可求解.【詳解】解:在?ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故選D.【點睛】本題考查了平行四邊形的性質,屬于簡單題,熟悉平行四邊形的性質是解題關鍵.7、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當AC為斜邊時,如圖,設⊙O是Rt△ABC的內切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當BC為斜邊時,如圖,設⊙O是Rt△ABC的內切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內切圓半徑的求法及勾股定理,依據圓的切線性質是解答此題的關鍵.等面積法是求高度等線段長的常用手段.8、C【分析】根據函數(shù)圖象依次計算判斷即可得到答案.【詳解】∵對稱軸是直線x=-1,∴,∴,故①正確;∵圖象與x軸有兩個交點,∴>0,故②正確;∵圖象的對稱軸是直線x=-1,與x軸一個交點坐標是(2,0),∴與x軸另一個交點是(-4,0),∴方程的兩根是2和-4,故③正確;∵圖象開口向下,∴在對稱軸左側y隨著x的增大而增大,∴是拋物線上兩點,則<,故④錯誤,∴正確的有①、②、③,故選:C.【點睛】此題考查二次函數(shù)的性質,根據函數(shù)圖象判斷式子的正負,正確理解函數(shù)圖象,掌握各式子與各字母系數(shù)的關系是解題的關鍵.9、C【分析】根據拋物線開口向下,對稱軸在y軸右側,以及拋物線與坐標軸的交點,結合圖象即可作出判斷.【詳解】解:由題意得:a<0,c>0,=1>0,∴b>0,即abc<0,選項①錯誤;-b=2a,即2a+b=0,選項②正確;當x=1時,y=a+b+c為最大值,則當m≠1時,a+b+c>am2+bm+c,即當m≠1時,a+b>am2+bm,選項③正確;由圖象知,當x=-1時,ax2+bx+c=a-b+c<0,選項④錯誤;∵ax12+bx1=ax22+bx2,∴ax12-ax22+bx1-bx2=0,(x1-x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=,所以⑤正確.所以②③⑤正確,共3項,故選:C.【點睛】此題考查了二次函數(shù)圖象與系數(shù)的關系,解本題的關鍵二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.10、C【詳解】如圖所示:在Rt△ACD中,AD=3,DC=1,根據勾股定理得:AC=,又將△ABC繞點C順時針旋轉60°,則頂點A所經過的路徑長為l=.故選C.二、填空題(每小題3分,共24分)11、1:1【解析】根據相似三角形的性質:相似三角形的面積比等于相似比的平方即可解得.【詳解】∵兩個相似三角形的相似比為1:4,∴它們的面積比為1:1.故答案是:1:1.【點睛】考查對相似三角形性質的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.12、0和-4.【分析】根據因式分解即可求解.【詳解】解∴x1=0,x2=-4,故填:0和-4.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知一元二次方程的解法.13、【分析】先由數(shù)據的平均數(shù)公式求得x,再根據方差的公式計算即可.【詳解】∵數(shù)據1,2,x,4的平均數(shù)是2,∴,解得:,∴方差.故答案為:.【點睛】本題考查了平均數(shù)與方差的定義,平均數(shù)是所有數(shù)據的和除以數(shù)據的個數(shù);方差是一組數(shù)據中各數(shù)據與它們的平均數(shù)的差的平方的平均數(shù).14、1【分析】先利用一元二次方程根的定義得到a-b=﹣4,再把2019﹣a+b變形為2019﹣(a-b),然后利用整體代入的方法計算.【詳解】把代入一元二次方程,得:,即:,∴,故答案為:1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.15、1
【分析】根據口袋中裝有白球3個,黑球5個,黃球n個,故球的總個數(shù)為3+5+n,再根據黃球的概率公式列式解答即可.【詳解】∵口袋中裝有白球3個,黑球5個,黃球n個,∴球的總個數(shù)為3+5+n,∵從中隨機摸出一個球,摸到白色球的概率為,即,解得:n=1,故答案為:1.【點睛】本題主要考查概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.16、55【分析】連接OA,OB,根據圓周角定理可得解.【詳解】連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所對的圓周角和圓心角,∴∠C=∠AOB=55°.17、1【分析】由∠AED=∠B,∠A是公共角,根據有兩角對應相等的兩個三角形相似,即可證得△ADE∽△ACB,又由相似三角形面積的比等于相似比的平方,可得,然后由AE=2,△ADE的面積為4,四邊形BCDE的面積為5,即可求得AB的長.【詳解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面積為4,四邊形BCED的面積為5,∴△ABC的面積為9,∵AE=2,∴,解得:AB=1.故答案為1.【點睛】本題考查相似三角形的判定性質,掌握相似三角形的面積比等于相似比的平方是解題的關鍵.18、18.【解析】∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵,∴,∴.三、解答題(共66分)19、(1),;(2);(3);(4)S=﹣t2+3t,S的最大值為.【分析】(1)作PH⊥AB于H,根據勾股定理求出AB,證明△BHP∽△BCA,根據相似三角形的性質列出比例式,求出PH,根據三角形的面積公式求出S;(2)根據△BQP∽△BCA,得到=,代入計算求出t即可;(3)過Q作QG⊥BC于G,證明△QBG∽△ABC,根據相似三角形的性質列式計算,得到答案;(4)根據△QBG∽△ABC,用t表示出QG,根據三角形的面積公式列出二次函數(shù)關系式,根據二次函數(shù)的性質計算即可.【詳解】解:在Rt△ABC中,AC=6cm,BC=8cm,由勾股定理得,AB===10cm,∴0<t≤5,經過ts時,BP=t,AQ=2t,則BQ=10﹣2t,(1)如圖1,作PH⊥AB于H,當t=2時,BP=2,BQ=10﹣2t=6,∵∠BHP=∠BCA=90°,∠B=∠B,∴△BHP∽△BCA,∴=,即=,解得:PH=,∴S=×6×=,故答案為:;;(2)當PQ⊥AB時,∠BQP=∠BCA=90°,∠B=∠B,∴△BQP∽△BCA,∴=,即=,解得,t=,則當t=時,PQ⊥AB;(3)如圖2,過Q作QG⊥BC于G,∵QB=QP,QG⊥BC,∴BG=GP=t,∵∠BGQ=∠C=90°,∠B=∠B,∴△QBG∽△ABC,∴=,即=,解得,t=,∴當t=時,△BPQ是以BP為底邊的等腰三角形;(4)由(3)可知,△QBG∽△ABC,∴=,即=,解得,QG=﹣t+6,∴S=×t×(﹣t+6),=﹣t2+3t,=﹣(t﹣)2+,則當t=時,S的值最大,最大值為.【點睛】本題考查的是相似三角形的判定和性質、二次函數(shù)的應用以及三角形的面積計算,掌握相似三角形的判定定理和性質定理、二次函數(shù)的性質是解題的關鍵.20、(1)①或;②長為或;(2);(3)的面積會發(fā)生變化;存在,最大值為:,最小值為:【分析】(1)①分兩種情形分別求解即可;
②顯然不能為直角;當為直角時,根據計算即可;當為直角時,根據計算即可;(2)連接,,證得為等腰直角三角形,根據SAS可證得,根據條件可求得,根據勾股定理求得,即可求得答案;(3)根據三角形中位線定理,可證得是等腰直角三角形,求得,當取最大時,面積最大,當取最小時,面積最小,即可求得答案.【詳解】(1)①,或;②顯然不能為直角;當為直角時,,即,解得:;當為直角時,,即,;綜上:長為或;(2)如圖,連接,,根據旋轉的性質得:為等腰直角三角形,∴,,,,,,,在和中,,,,又∵,,,;(3)發(fā)生變化,存在最大值和最小值,理由:如圖,點P,M分別是,的中點,,,點N,P分別是,的中點,,,,,是等腰三角形,,,,,,,,,是等腰直角三角形;∴,當取最大時,面積最大,∴,當取最小時,面積最小,∴故:的面積發(fā)生變化,存在最大值和最小值,最大值為:,最小值為:.【點睛】本題是幾何變換綜合題,考查了等腰直角三角形的性質,勾股定理,全等三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,有一定的難度.21、(1)證明見解析;(2)證明見解析;(3)sin∠ADB的值為.【分析】(1)根據等角的余角相等即可證明;(2)連接OA、OB.只要證明△OCB≌△OCA即可解決問題;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q,則四邊形OPHQ是矩形,可知BN是直徑,則HQ=OP=DN=,設AH=x,則AQ=x+,AC=2AQ=2x+1,BC=2x+1,CH=AC﹣AH=2x+1﹣x=x+1,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+1)2=()2﹣x2+(x+1)2,解得x=3,BC=2x+1=15,CH=x+1=12求出sin∠BCH,即為sin∠ADB的值.【詳解】(1)證明:如圖1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=10°,∴∠DAH+∠ADH=10°,∠DBE+∠BDE=10°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)證明:連接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q.則四邊形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=10°,∴BN是直徑,則OP=DN=,∴HQ=OP=,設AH=x,則AQ=x+,AC=2AQ=2x+1,BC=AC=2x+1,∴CH=AC﹣AH=2x+1﹣x=x+1在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+1)2=()2﹣x2+(x+1)2,整理得2x2+1x﹣45=0,(x﹣3)(2x+15)=0,解得:x=3(負值舍去),BC=2x+1=15,CH=x+1=12,BH=1∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值為.【點睛】本題考查了圓的垂徑定理、銳角三角函數(shù)、勾股定理、全等三角形的判定和性質、矩形的判定和性質、三角形的中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形或特殊四邊形解決問題,屬于中考壓軸題.22、(1)水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣(x﹣3)2+5(0<x<8);(2)為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內;(3)擴建改造后噴水池水柱的最大高度為米.【解析】分析:(1)根據頂點坐標可設二次函數(shù)的頂點式,代入點(8,0),求出a值,此題得解;(2)利用二次函數(shù)圖象上點的坐標特征,求出當y=1.8時x的值,由此即可得出結論;(3)利用二次函數(shù)圖象上點的坐標特征可求出拋物線與y軸的交點坐標,由拋物線的形狀不變可設改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+bx+,代入點(16,0)可求出b值,再利用配方法將二次函數(shù)表達式變形為頂點式,即可得出結論.詳解:(1)設水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=a(x﹣3)2+5(a≠0),將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣(x﹣3)2+5(0<x<8).(2)當y=1.8時,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內.(3)當x=0時,y=﹣(x﹣3)2+5=.設改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+bx+.∵該函數(shù)圖象過點(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在拋物線(第一象限部分)的函數(shù)表達式為y=﹣x2+3x+=﹣(x﹣)2+,∴擴建改造后噴水池水柱的最大高度為米.點睛:本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)根據點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式;(2)利用二次函數(shù)圖象上點的坐標特征求出當y=1.8時x的值;(3)根據點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式.23、(1)30;(2)1【分析】(1)若k=3時,方程為x2-1x+6=0,方法一:先求出一元二次方程的兩根a,b,再將a,b代入因式分解后的式子計算即可;方法二:利用根與系數(shù)的關系得到a+b=1,ab=6,再將因式分解,然后利用整體代入的方法計算;(2)分1為底邊和1為腰兩種情況討論即可確定等腰三角形的周長.【詳解】解:(1)將代入原方程,得:.方法一:解上述方程得:因式分解,得:.代入方程的解,得:.方法二:應用一元二次方程根與系數(shù)的關系因式分解,得:,由根與系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版企業(yè)總經理聘用協(xié)議
- 2025年進口熱帶水果專供協(xié)議書3篇
- 2025年度纖維原料加工合作合同模板3篇
- 2025年度船舶抵押貸款服務協(xié)議范本3篇
- 2025版二零二五年度消防設備租賃合同3篇
- 現(xiàn)代科技下的中醫(yī)家庭健康服務
- 教育與科技創(chuàng)新的未來路徑
- 電力行業(yè)從業(yè)人員安全用電培訓教程
- 二零二五年度創(chuàng)新型民間車輛抵押貸款合同范本4篇
- 基于2025年度計劃的研發(fā)合作與專利權共享協(xié)議3篇
- 【高空拋物侵權責任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- 二年級數(shù)學上冊100道口算題大全 (每日一套共26套)
- 物流無人機垂直起降場選址與建設規(guī)范
- 肺炎臨床路徑
- 外科手術鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 如何克服高中生的社交恐懼癥
- 聚焦任務的學習設計作業(yè)改革新視角
- 移動商務內容運營(吳洪貴)任務三 APP的品牌建立與價值提供
- 電子競技范文10篇
- 食堂服務質量控制方案與保障措施
評論
0/150
提交評論