廣東省惠州惠城區(qū)五校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
廣東省惠州惠城區(qū)五校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
廣東省惠州惠城區(qū)五校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
廣東省惠州惠城區(qū)五校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
廣東省惠州惠城區(qū)五校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如下圖:⊙O的直徑為10,弦AB的長為8,點P是弦AB上的一個動點,使線段OP的長度為整數(shù)的點P有()A.3個 B.4個 C.5個 D.6個2.某盞路燈照射的空間可以看成如圖所示的圓錐,它的高米,底面半徑米,則圓錐的側(cè)面積是多少平方米(結(jié)果保留).()A. B. C. D.3.如圖,正方形中,為的中點,的垂直平分線分別交,及的延長線于點,,,連接,,,連接并延長交于點,則下列結(jié)論中:①;②;③;④;⑤;⑥;⑦.正確的結(jié)論的個數(shù)為()A.3 B.4 C.5 D.64.如圖,AD∥BE∥CF,AB=3,BC=6,DE=2,則EF的值為()A.2 B.3 C.4 D.55.在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.6.在學(xué)校組織的實踐活動中,小新同學(xué)用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側(cè)面積是()A.4π B.1π C.π D.2π7.關(guān)于x的方程有一個根是2,則另一個根等于()A.-4 B. C. D.8.如圖,在Rt△ABC中,∠C=90°,AC=2,BC=3,則tanA=()A. B. C. D.9.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.10.若式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知一個不透明的盒子中裝有3個紅球,2個白球,這些球除顏色外均相同,現(xiàn)從盒中任意摸出1個球,則摸到紅球的概率是________

.12.如圖,沿傾斜角為30°的山坡植樹,要求相鄰兩棵樹間的水平距離AC為2m,那么相鄰兩棵樹的斜坡距離AB約為________m.(結(jié)果精確到0.1m)13.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3,那么PP′=______.14.如圖所示,寫出一個能判定的條件________.15.函數(shù)沿直線翻折所得函數(shù)解析式為_____________.16.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.17.已知兩個相似三角形的周長比是,它們的面積比是________.18.若菱形的兩條對角線長分別是6㎝和8㎝,則該菱形的面積是㎝1.三、解答題(共66分)19.(10分)在正方形ABCD中,M是BC邊上一點,且點M不與B、C重合,點P在射線AM上,將線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,連接BP,DQ.(1)依題意補(bǔ)全圖1;(2)①連接DP,若點P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關(guān)系為:.20.(6分)已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D,(1)求此二次函數(shù)解析式;(2)連接DC、BC、DB,求證:△BCD是直角三角形;(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.21.(6分)閱讀下面材料,完成(1)﹣(3)題數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對角線AC上一點,∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:小柏:“通過觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;小源:“通過觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;小亮:“通過構(gòu)造三角形全等,再經(jīng)過進(jìn)一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.……老師:“保留原題條件,如圖2,AC上存在點F,使DF=CF=AE,連接DF并延長交BC于點G,求的值”.(1)求證:∠ACB=∠ABE;(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).22.(8分)放寒假,小明的爸爸把油箱注滿油后準(zhǔn)備駕駛汽車到距家300的學(xué)校接小明,在接到小明后立即按原路返回,已知小明爸爸汽車油箱的容積為70,請回答下列問題:(1)寫出油箱注滿油后,汽車能夠行使的總路程與平均耗油量之間的函數(shù)關(guān)系式;(2)小明的爸爸以平均每千米耗油0.1的速度駕駛汽車到達(dá)學(xué)校,在返回時由于下雨,小明的爸爸降低了車速,此時每千米的耗油量增加了一倍,如果小明的爸爸始終以此速度行使,油箱里的油是否夠回到家?如果不夠用,請通過計算說明至少還需加多少油?23.(8分)如圖,已知拋物線與軸相交于、兩點,與軸相交于點,對稱軸為,直線與拋物線相交于、兩點.(1)求此拋物線的解析式;(2)為拋物線上一動點,且位于的下方,求出面積的最大值及此時點的坐標(biāo);(3)設(shè)點在軸上,且滿足,求的長.24.(8分)如圖所示,中,,,將翻折,使得點落到邊上的點處,折痕分別交邊,于點、點,如果,那么______.25.(10分)解方程:-2=3(-x).26.(10分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG.(1)求證:EG是⊙O的切線;(2)延長AB交GE的延長線于點M,若AH=2,,求OM的長.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】當(dāng)P為AB的中點時OP最短,利用垂徑定理得到OP垂直于AB,在直角三角形AOP中,由OA與AP的長,利用勾股定理求出OP的長;當(dāng)P與A或B重合時,OP最長,求出OP的范圍,由OP為整數(shù),即可得到OP所有可能的長.【詳解】當(dāng)P為AB的中點時,由垂徑定理得OP⊥AB,此時OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根據(jù)勾股定理得OP=3,即OP的最小值為3;當(dāng)P與A或B重合時,OP最長,此時OP=5,∴,則使線段OP的長度為整數(shù)的點P有3,4,5,共3個.故選A考點:1.垂徑定理;2.勾股定理2、A【分析】根據(jù)勾股定理求得AB,再求得圓錐的底面周長即圓錐的側(cè)面弧長,根據(jù)扇形面積的計算方法S=lr,求得答案即可.【詳解】解:∵AO=8米,OB=6米,∴AB=10米,

∴圓錐的底面周長=2×π×6=12π米,

∴S扇形=lr=×12π×10=60π(米2).

故選:A.【點睛】本題考查了圓錐的有關(guān)計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,熟知圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.3、B【分析】①作輔助線,構(gòu)建三角形全等,證明△ADE≌△GKF,則FG=AE,可得FG=2AO;②設(shè)正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,證明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判斷;③分別表示出OD、OC,根據(jù)勾股定理逆定理可以判斷;④證明∠HEA=∠AED=∠ODE,OE≠DE,則∠DOE≠∠HEA,OD與HE不平行;

⑤由②可得,根據(jù)AR∥CD,得,則;⑥證明△HAE∽△ODE,可得,等量代換可得OE2=AH?DE;⑦分別計算HC、OG、BH的長,可得結(jié)論.【詳解】解:①如圖,過G作GK⊥AD于K,

∴∠GKF=90°,

∵四邊形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂線,

∴AE=2AO,

∴FG=2AO,

故①正確;②設(shè)正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正確;③,,∴,∴OC與OD不垂直,故③錯誤;

④∵FH是AE的中垂線,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中點,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

當(dāng)∠DOE=∠HEA時,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD與HE不平行,

故④不正確;

⑤由②知BH=,,延長CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正確;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE?2OE=AH?DE,

∴2OE2=AH?DE,

故⑥正確;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正確;

綜上所述,本題正確的有;①②⑤⑥,共4個,

故選:B.【點睛】本題是相似三角形的判定與性質(zhì)以及勾股定理、線段垂直平分線的性質(zhì)、正方形的性質(zhì)的綜合應(yīng)用,正確作輔助線是關(guān)鍵,解答時證明三角形相似是難點.4、C【分析】根據(jù)平行線分線段成比例定理即可得出答案.【詳解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故選C.【點睛】本題考查了平行線分線段成比例定理,掌握定理的內(nèi)容是解題的關(guān)鍵.5、B【分析】根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.6、B【分析】根據(jù)圓錐的側(cè)面積,代入數(shù)進(jìn)行計算即可.【詳解】解:圓錐的側(cè)面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關(guān)鍵.7、B【分析】利用根與系數(shù)的關(guān)系,,由一個根為2,以及a,c的值求出另一根即可.【詳解】解:∵關(guān)于x的方程有一個根是2,∴,即∴,故選:B.【點睛】此題主要考查了根與系數(shù)的關(guān)系,熟練地運用根與系數(shù)的關(guān)系可以大大降低計算量.8、B【分析】根據(jù)正切的定義計算,得到答案.【詳解】在Rt△ABC中,∠C=90°,,故選:B.【點睛】本題考查正切的計算,熟知直角三角形中正切的表示是解題的關(guān)鍵.9、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機(jī)摸出一個球后放回攪勻,再隨機(jī)摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.10、C【解析】直接利用二次根式的定義即可得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x的取值范圍是:x>1.故選:C.【點睛】本題考查了二次根式有意義的條件,正確把握定義是解答本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先求出這個口袋里一共有球的個數(shù),然后用紅球的個數(shù)除以球的總個數(shù)即可.【詳解】因為共有5個球,其中紅球由3個,所以從中任意摸出一個球是紅球的概率是,故答案為.【點睛】本題考查了概率公式,掌握概率=所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.12、2.3【解析】AB是Rt△ABC的斜邊,這個直角三角形中,已知一邊和一銳角,滿足解直角三角形的條件,可求出AB的長.【詳解】在Rt△ABC中,∴∴即斜坡AB的長為2.3m.故答案為2.3.【點睛】考查解直角三角形的實際應(yīng)用,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.13、3【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉(zhuǎn)變化,旋轉(zhuǎn)得到的圖形與原圖形全等,解答時要分清旋轉(zhuǎn)角和對應(yīng)線段.14、(答案不唯一)【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【詳解】已知△ABC和△DCA中,∠ACD=∠BAC;

如果△ABC∽△DAC,需滿足的條件有:

①∠DAC=∠B或∠ADC=∠BAC;

②AC2=DC?BC;

故答案為:AC2=DC?BC(答案不唯一).【點睛】此題主要考查了相似三角形的判定方法;熟記三角形相似的判定方法是解決問題的關(guān)鍵.15、【解析】函數(shù)沿直線翻折所得函數(shù)圖像開口向下,只要根據(jù)軸對稱的性質(zhì)求出對稱后的頂點坐標(biāo)即可.【詳解】∵=(x-1)2+3,∴其頂點坐標(biāo)是(1,3),∵(1,3)關(guān)于直線的點的坐標(biāo)是(1,-1),∴所得函數(shù)解析式為(x-1)2-1.故答案為:.【點睛】本題考查了二次函數(shù)的軸對稱變換,其形狀不變,但開口方向相反,因此a值為原來的相反數(shù),頂點位置改變,只要根據(jù)軸對稱的點坐標(biāo)特征求出新的頂點坐標(biāo),即可確定解析式.16、【解析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質(zhì).17、【解析】根據(jù)相似三角形的性質(zhì)直接解答即可.解:∵兩個相似三角形的周長比是1:3,∴它們的面積比是,即1:1.故答案為1:1.本題考查的是相似三角形的性質(zhì),即相似三角形(多邊形)的周長的比等于相似比;面積的比等于相似比的平方.18、14【解析】已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.解:根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6×8=14cm1,故答案為14.三、解答題(共66分)19、(1)詳見解析;(1)①詳見解析;②BP=AB.【分析】(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結(jié)論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【詳解】(1)解:補(bǔ)全圖形如圖1:(1)①證明:連接BD,如圖1,∵線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,∴AQ=AP,∠QAP=90°,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:結(jié)論:BP=AB.理由:如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【點睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)變換、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸20、(2)拋物線的解析式為y=﹣x2+2x+2.(2)證明見解析;(2)點P坐標(biāo)為(,)或(2,2).【解析】試題分析:(2)將A(﹣2,0)、C(0,2),代入二次函數(shù)y=ax2+bx﹣2a,求得a、b的值即可確定二次函數(shù)的解析式;(2)分別求得線段BC、CD、BD的長,利用勾股定理的逆定理進(jìn)行判定即可;(2)分以CD為底和以CD為腰兩種情況討論.運用兩點間距離公式建立起P點橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再結(jié)合拋物線解析式即可求解.試題解析:(2)∵二次函數(shù)y=ax2+bx﹣2a經(jīng)過點A(﹣2,0)、C(0,2),∴將A(﹣2,0)、C(0,2),代入,得,解得,∴拋物線的解析式為y=﹣x2+2x+2;(2)如圖,連接DC、BC、DB,由y=﹣x2+2x+2=﹣(x﹣2)2+4得,D點坐標(biāo)為(2,4),∴CD==,BC==2,BD==2,∵CD2+BC2=()2+(2)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(2)y=﹣x2+2x+2對稱軸為直線x=2.假設(shè)存在這樣的點P,①以CD為底邊,則P2D=P2C,設(shè)P2點坐標(biāo)為(x,y),根據(jù)勾股定理可得P2C2=x2+(2﹣y)2,P2D2=(x﹣2)2+(4﹣y)2,因此x2+(2﹣y)2=(x﹣2)2+(4﹣y)2,即y=4﹣x.又P2點(x,y)在拋物線上,∴4﹣x=﹣x2+2x+2,即x2﹣2x+2=0,解得x2=,x2=<2,(不滿足在對稱軸右側(cè)應(yīng)舍去),∴x=,∴y=4﹣x=,即點P2坐標(biāo)為(,).②以CD為一腰,∵點P2在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點P2與點C關(guān)于直線x=2對稱,此時點P2坐標(biāo)為(2,2).∴符合條件的點P坐標(biāo)為(,)或(2,2).考點:2.二次函數(shù)圖象性質(zhì);2.等腰三角形性質(zhì);2.直角三角形的判定.21、(1)見解析;(2)CB=2AB;(3)【分析】(1)利用平行線的性質(zhì)以及角的等量代換求證即可;(2)在BE邊上取點H,使BH=AE,可證明△ABH≌△DAE,△ABE∽△ACB,利用相似三角形的性質(zhì)從而得出結(jié)論;(3)連接BD交AC于點Q,過點A作AK⊥BD于點K,得出,通過證明△ADK∽△DBC得出∠BDC=∠AKD=90°,再證DF=FQ,設(shè)AD=a,因此有DF=FC=QF=ka,再利用相似三角形的性質(zhì)得出AC=3ka,,,從而得出答案.【詳解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE邊上取點H,使BH=AE∵AB=AD∴△ABH≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE∽△ACB∴∴CB=2AB;(3)連接BD交AC于點Q,過點A作AK⊥BD于點K∵AD=AB∴∠AKD=90°∵∴∵AD∥BC∴∠ADK=∠DBC∴△ADK∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ設(shè)AD=a∴DF=FC=QF=ka∵AD∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD∽△CQB∴∴AQ=ka=QF=CF∴AC=3ka∵△ABE∽△ACB∴∴同理△AFD∽△CFG∴.【點睛】本題是一道關(guān)于相似的綜合題目,難度較大,根據(jù)題目作出合適的輔助線是解此題的關(guān)鍵,解決此題還需要較強(qiáng)的數(shù)形結(jié)合的能力以及較強(qiáng)的計算能力.22、(1);(2)不夠,至少要加油20L【分析】(1)根據(jù)總路程×平均耗油量=油箱總油量求解即可;(2)先計算去時所用油量,再計算返回時用油量,與油箱中剩余油量作比較即可得出答案.【詳解】解:(1)由題意可得出總路程與平均耗油量的函數(shù)關(guān)系式為:;(2)小明的爸爸始終以此速度行使,油箱里的油不能夠回到家小明爸爸去時用油量是:()油箱剩下的油量是:()返回每千米用油量是:()返回時用油量是:().所以,油箱里的油不能夠回到家,至少要加油:【點睛】本題考查的知識點是求反比例函數(shù)的解析式,比較基礎(chǔ),易于掌握.23、(1);(2)當(dāng)時,取最大值,此時點坐標(biāo)為.(3)或17.【分析】(1)根據(jù)對稱軸與點A代入即可求解;(2)先求出,過點作軸的平行線,交直線于點,設(shè),得到,,表示出,根據(jù)二次函數(shù)的性質(zhì)即可求解;(3)根據(jù)題意分①當(dāng)在軸正半軸上時,②當(dāng)在軸負(fù)半軸上時利用相似三角形的性質(zhì)即可求解.【詳解】(1)∵對稱軸為x=?1,∴?=?1,∴b=2a,∴y=ax2+2ax?5,∵y=?x+3與x軸交于點A(3,0),將點A代入y=ax2+2ax?5可得a=∴.(2)令,解得:,,∴,過點作軸的平行線,交直線于點,設(shè),則,∴,,則,∵,∴當(dāng)時,取最大值,此時點坐標(biāo)為.(3)存在,理由:①當(dāng)在軸正半軸上時,如圖,過點作于,根據(jù)三角形的外角的性質(zhì)得,,又∵,∴,∴,∵,,∴,設(shè),則,又∵,,∴,∴,∴,∴,②當(dāng)在軸負(fù)半軸上時,記作,由①知,,取,如圖,則由對稱知:,∴,因此點也滿足題目條件,∴,綜合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論