




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
BoundaryElementMethods—TheoryandProgramming
Xiao-WeiGAO,KaiYang(高效偉,楊愷)大連理工大學(xué)航空航天學(xué)院邊界單元法理論及程序設(shè)計SchoolofAeronauticsandAstronauticsDalianUniversityofTechnology1.Introduction
1.1Whytolearnboundaryelementmethods(BEM)?為什么要學(xué)邊界單元法(BEM)?Tosolveproblemsinwhichfiniteelementmethod(FEM)isinadequateorinefficient.GeometryisnotregularComputationalregionisInfiniteorsemi-infiniteFracturetipanalysis引言
BEMiseasytogeneratethedatarequiredtorunaproblemandcarryoutthemodificationsneededtoachieveanoptimumdesign.Whytolearnboundaryelementmethods(BEM)?為什么要學(xué)邊界單元法(BEM)?OnlysurfacesoftheproblemneedtobediscretizedintoboundaryelementsMoreconvenienttodooptimumdesigncomputationSuitabeforparameterbackanalysisBEMismoreaccuratethanothernumericalmethods.Whytolearnboundaryelementmethods(BEM)?為什么要學(xué)邊界單元法(BEM)?Semi-analysischaracteristicUseoffundamentalsolutionsGradientsofphysicalquantitieshavethesameaccuracylevelasthephysicalquantitiesselfBEMisveryefficienttosolveinfiniteorsemi-infiniteproblems.Whytolearnboundaryelementmethods(BEM)?為什么要學(xué)邊界單元法(BEM)?InfiniteboundaryconditionscanbeautomaticallymodeledUseofInfiniteelementsUndergroundopeningPilefoundationproblemsAerodynamicproblemsBEMisrobusttosolvestress(orflux)concentrationproblems.Whytolearnboundaryelementmethods(BEM)?為什么要學(xué)邊界單元法(BEM)?FundamentalsolutionsaresingularfunctionsFractureproblemsRigidfoundationproblemsBoundarylayerproblemsinfluidmechanicsReferences(參考文獻)BoundaryElementsAnIntroductoryCourse,
BrebbiaCA,DominguezJ,ComputationalMechanicsPublications,1992。BoundaryElementProgramminginMechanics,
GaoXW&DaviesTG,CambridgeUniversityPress,2002。邊界單元法的理論和工程應(yīng)用,(英)布瑞比亞等著,北京-國防工業(yè)出版社,1988。邊界元理論及應(yīng)用,楊德全,趙忠生,北京-理工大學(xué)出版社,2002。1.2MathematicalPreliminaries(數(shù)學(xué)預(yù)備知識)Summationnotation:
Repeatedsubscriptsimplysummationofalltermsintherange,e.g.,
for2Dproblems,andfor3Dproblems.Therelationshipbetweenthesurfacetractionsandstressescanbeexpressedaswhichcanbewritteninthecomponentformas(i
=
1):(i
=
2):(i
=
3):Kroneckerdeltasymbolwheni=jwhenijInmatrixnotation,itsequivalentistheidentitymatrix[I].
Diracdeltafunction(impulsefunction)
wherepisthesingularpointand
denotesavanishinglysmallradiusofintegrationaroundthissingularity.
Gauss’theoremwhere
istheproblemdomain,
istheboundaryandisthei-thcomponentoftheunitoutwardnormalvector.
ThereductionofcertaindomainintegralstosurfaceintegralsiscentraltoBEM.Themethodof‘integrationbyparts’isanotherbasicmathematicaltechniquewhichisusedofteninconjunctionwithGauss’theorem.
Differentiationoftheproductoftwofunctions(f&g),withrespecttoxi,yields:‘integrationbyparts’statement:UsingGauss’theoremweobtain:
BEMfor1DProblems一維問題的邊界單元法One-dimensionalsecond-orderdifferentialequation:Multiplyequationbygandintegratebyparts
Integrationbypartstothelastterm
Letg(x,p)bethefundamentalsolutionoftheequation:
wherecisaconstantand.UsingDiracdeltafunctionpropertySubstitutingitintopreviousequationandusingwhereItfollowsthatxabConsideringuboundaryconditions:SolvingforandyieldsitfollowsthatFinally,weobtainorwhere作業(yè):推導(dǎo)左邊u已知,右邊q已知情況下的關(guān)系式.2.BEMforPotentialProblems位勢問題的邊界單元法
PotentialflowproblemsHeatconductionproblemsSeepageproblemsElectromagneticfieldproblemsAcousticproblems(Helmholtzequations)GoverningEquation(Laplaceequation):inBoundaryconditions:onon(EssentialCondition)(NaturalCondition)wherewhere2.1BasicIntegralEquationsMultiplygoverningequationbyweightedfunction
:(weightedResidualFormulation)orwrittenas:whereInasimilarmannerPuttingthemtogetheryieldsLet
bethefundamentalsolutionoftheequation:
SubstitutingbackandfromI=0,weobtainUsingnotationswecanexpresstheintegralequationas
Fundamentalsolutionscanbederivedasfor2Dproblemsfor3DproblemsDerivationoftheFundamentalsolutionfor2DConsiderradialdistributionofand,wehaveTheLaplaceoperatorinthecylindricalcoordinatesystemcanbeexpressedasIntegratingthisequationtwiceyieldsTodetermine,integratingequationoveracircularareaaroundpointpwithradius,itfollowsthat(assuming)Finally,thefundamentalsolutionfor2DisderivedasSubstitutingintothisequationyieldsDerivationoftheFundamentalsolutionfor3DTheLaplaceoperatorinthesphericalcoordinatesystemcanbeexpressedasIntegratingthisequationtwiceyieldsConsiderradialdistributionofand,wehaveTodetermine,integratingequationoveraspherewithradius,itfollowsthatFinally,thefundamentalsolutionfor3DisderivedasSubstitutingintothisequationyieldsBoundaryIntegralEquationThederivedintegralequationisonlyvalidforinternalpoints.Tosetuptheintegralequationforboundarypoints,alimitprocessisperformed.Asimplewaytodothisistoconsiderthatthepointiisontheboundarybutthedomainitselfisaugmentedbyahemisphereofradius(in3D)asshowninthefollowingfigure.For3D(),theintegralaroundgives:NoticingthatitfollowsthatTheyproducewhatiscalledafreeterm.For2D(),theintegralaroundgives:NoticingthatitfollowsthatTheyproducewhatiscalledafreeterm.TheboundaryintegralequationcanbewrittenforsmoothboundarypointsasForboundarypointslocatedatacorner,sinceTheboundaryintegralequationcanbewrittenforsmoothboundarypointsastheboundaryintegralequationiswhere.Forthesakeofeasyunderstanding,theboundaryintegralequationcanbewrittenaswherePisthesourcepointandQthefieldpoint.BoundaryElementMethod(BEM)Tonumericallysolvetheboundaryintegralequation,theboundaryisdividedintoNsegmentsorelements.ConstantElementsFortheconstantelements,thevaluesofuandqareassumedtobeconstantovereachelementandequaltothevalueatthemid-elementnode.CollocatingthesourcepointPatthei-thnode,thediscretizedboundaryintegralequationbecomes:UsingthefollowingnotationsTheBEMequationcanbeexpressedasinwhich,andarevaluesofuandqatnodei.Letusnowcallwheni≠jwheni=jhencetheBEMequationcanbewrittenasIfthepositionofivariesfrom1toN,oneobtainsTheseequationscanbewritteninmatrixformaswhere[H]and[G]aretwoNXNmatricesand{u}and{q}arevectorsoflengthN,i.e.,Ifqisspecifiedatallnodes,itiseasytowritethesystemofequationasfollows:whereSimilarly,ifuisspecifiedatallnodes,wecanobtain:whereIfsomenodesarespecifiedwithuandotherwithq,wehavetorearrangethesystembymovingcolumnswithspecifiedvaluestotheright-handsideandcolumnswithunknownstotheleft-handsidetoformthefollowingsystemofequations.where{x}isavectorofunknownsu’sandq’svaluesandisfoundbymultiplyingthecorrespondingcolumnsbytheknownvaluesofu’sandq’s.Forexample,ifandaregivenandotheruareunknowns,wecanoperatethealgebraicequationsasMultiplyingtheright-handsidetogether,thefollowingmatrixequationcanbeobtained:whereEvaluationofInternalPotentialwherefor2Dproblemsfor3DproblemsiQrEvaluationofIntegralsIn2DProblems1.Evaluationofinfluencecoefficient2.EvaluationofinfluencecoefficientChangecoordinatestoalocaloneWhereistheelementlengthand.Thelastintegralisequalto1.So3.Evaluationofinfluencecoefficientwheredisthedistancefromtotheelement.12a)whenItfollowsthat12Forsegment:cSoForsegment:Itfollowsthatb)whenc)whend=0,d124.EvaluationofinfluencecoefficientOnedimensionalGaussquadratureformulasGaussquadraturewhere()where
aretheGaussordinates;
aretheweights.nistheGaussorders;
Order(n)Ordinates()Weights(wk)1022
0.5773502692130
0.77459666920.88888888890.55555555564
0.3399810436
0.86113631160.65214515490.347854845150
0.5384693101
0.90617984590.56888888890.47862867050.23692688516
0.2386191861
0.6612093865
0.93246951420.46791393460.36076157300.1713244924(Stround&Secrest,1966)where
:theGaussordinates:theweightsn:theGaussorders
GaussintegrationruleforthelogarithmicallysingularfunctionsnOrdinates()Weights()10.25120.11200880610.60227690810.71853931900.281460680930.06389079310.36899706370.76688030390.51340455220.39198004120.094615406640.04144848010.24527491430.55616545350.84898239450.38346406810.38687531770.19043512690.039225487150.0291344722041170252050.67731417450.89477136100.29789347170.34977622650.23448829000.09893045950.0189115521ComputerCode(POCONBE)forPotentialProblemsusingConstantElementsMainprogramlist:RoutineOUTPTPCThisroutineoutputstheresults.Itfirstliststhecoordinatesoftheboundarynodesandthecorrespondingvaluesofpotentialanditsderivatives(orfluxes).Italsoprintsthevaluesofpotentialandfluxesatinternalpointsifanyhavebeenrequested.Example2.1:HeatFlowExampleDefinitionoftheproblemBoundaryconditionsInputdata(HEAT.INP):HEATFLOWEXAMPLE(12CONSTANTELEMENTS)125(Numbersofboundaryelementsandinternalnodes)0.0.2.0.4.0.6.0.6.2.6.4.(X(I),Y(I),I=1,N)6.6.4.6.2.6.0.6.0.4.0.2.10.(BoundaryconditionsKODE(I)andFI(I))10.10.00.00.00.10.10.10.0300.0300.0300.2.2.2.4.3.3.4.2.4.4.(Coordinatesofinternalpoints)Outputdata(HEAT.OUT):
BOUNDARYNODESXYPOTENTIALPOTENTIALDERIVATIVE0.10000E+010.00000E+000.25225E+030.00000E+000.30000E+010.00000E+000.15002E+030.00000E+000.50000E+010.00000E+000.47750E+020.00000E+000.60000E+010.10000E+010.00000E+00-0.52962E+020.60000E+010.30000E+010.00000E+00-0.48771E+020.60000E+010.50000E+010.00000E+00-0.52962E+020.50000E+010.60000E+010.47750E+020.00000E+000.30000E+010.60000E+010.15002E+030.00000E+000.10000E+010.60000E+010.25225E+030.00000E+000.00000E+000.50000E+010.30000E+030.52969E+020.00000E+000.30000E+010.30000E+030.48737E+020.00000E+000.10000E+010.30000E+030.52969E+02INTERNALPOINTSXYPOTENTIALFLUXXFLUXY0.20000E+010.20000E+010.20028E+03-0.50303E+02-0.14976E+000.20000E+010.40000E+010.20028E+03-0.50303E+020.14975E+000.30000E+010.30000E+010.15001E+03-0.50215E+02-0.25367E-050.40000E+010.20000E+010.99740E+02-0.50306E+020.14564E+000.40000E+010.40000E+010.99740E+02-0.50306E+02-0.14564E+00LinearElementsForthelinearelements,thevaluesofuandqareassumedtobelinearlyvaryingovereachelementandequaltothevaluesattheendsoftheelement.AfterdiscretizingtheboundaryintoaseriesofNelements,theboundaryintegralequationcanbewrittenasinwhich,theindexirepresentsthesourcepointcollocatingatnodei.whereistheinternalangleofthecornerinradians.Toevaluateboundaryintegrals,uandqareinterpolatedbytwonodalvaluesattheendsoftheelement.Takingthedimensionlesscoordinateasthevariablefrom-1to+1,thelinearvariationofucanbeexpressedasLettakevaluesatthetwoendsoftheelement.ItfollowsthatSolvingthisequationsetforkandbgiveswhereandarethenodalvaluesofu.UsingthefollowingnotationsSubstitutingthembacktothelineequationyieldsTheinterpolationformulationcanbewrittenasandarecalledshapefunctions.Similarly,whereNowtheintegralsinboundaryintegralequationscanbeexpressedaswhereAlgebraicSystemofEquationsFromWecanobtainforthei-thecollocationpointthat:whereorAswaspreviouslyshown,wecansimplywritewherewhenj
iwhenj=iandthewholesetinmatrixformbecomes[H]{u}=[G]{q}where[G]isnowanNX2Nrectangularmatrix.DeterminationoftheDiagonalTermsin
[H]forCloseDomainsThediagonaltermsin[H]
arecomputedimplicitly.Assumingaconstantpotentialoverthewholeboundary,thefluxmustbezeroandhence[H]{I}={0}Where{I}isavectorthatforallnodeshasaunitpotential.Thus,wehave(for)Whichgivesthediagonalcoefficientsintermsoftherestofthetermsofthe[H]matrix.DeterminationoftheDiagonalTermsin
[H]forInfiniteDomainsIfaunitpotentialisprescribedforaboundlessdomain,itfollowsthatthediagonaltermsare(for)Whichgivesthediagonalcoefficientsintermsoftherestofthetermsofthe[H]matrix.Sinceforacircularboundary,DeterminationoftheDiagonalTermsin
[G]Fortheelementwhichincludesthesingularity,theinfluentcoefficientscanbeexpressedasUsingtheintegrationvariabletransformationitcanbederivedthatThenthediagonaltermsbecomeIntegratingthemanalyticallyyieldsApplyboundaryconditionsAccordingtothesmoothnessoftheboundarynodes(includingcorners),fourdifferentcasesarepossibledependingontheboundaryconditions:Knownvalues:fluxes‘before’and‘a(chǎn)fter’thecorner.Unknownvalue:potential(b)Knownvalues:potential,andflux‘before’thecorner.Unknownvalue:flux‘a(chǎn)fter’thecorner(c)Knownvalues:potential,andflux‘a(chǎn)fter’thecorner.Unknownvalue:flux‘before’thecorner(d)Knownvalues:potential.Unknownvalues:flux‘before’and‘a(chǎn)fter’thecorner.Thereisonlyoneunknownpernodeforthefirstthreecases,andtwounknownsforcase(d).Aslongasthereisonlyoneunknownpernode,systemcanbereorderedinsuchawaythatalltheunknownsaretakentothelefthandsideandobtaintheusualsystemofNXNequations,i.e.[A]{X}={F}Where{X}isthevectorofunknownboundarypotentialsandfluxes,and{F}istheknownvectorcomputedbytheproductoftheknowboundaryconditionsandthecorrespondingcoefficientsofthe[G]or[H]matrices.Whenthenumberofunknownsatacornernodeistwo(case(d)),oneextraequationisneededforthenode.Theproblemcanbesolvedusingauxiliaryequationsordiscontinuouselements.DiscontinuousElementsToavoidtheproblemofhavingtwounknownfluxesatacomernode(forwhichonlyoneboundaryelementequationcanbewritten),thenodesofthetwolinearelementswhichmeetatthecornercanbeshiftedinsidethetwoelements.Thenodesremainastwodistinctnodesandoneequationcanbewrittenforeachnode.Discontinuouselementsarealsousefulforsituationsinwhichoneofthevariablestakesaninfinitevalueattheendoftheelement(forinstanceatareentrycornerorinfracturemechanicsapplications).Thevaluesofuandqatanypointonalinearelementhavebeendefinedintermsoftheirvaluesattheextremepointsbyequation:DiscontinuousElementsIfthetwonodesofanelementhavebeenshiftedfromtheendsdistancesaandbrespectively,theaboveequationcanbeparticularizedforthenodes.whereandarethelocalcoordinatesofthenodalpoints.InvertingtheaboveequationgiveswhereThenewinterpolationformulationnowbecomesThesaverelationcanbewrittenfortheflux:Whensolvingapotentialproblem,continuousanddiscontinuouselementscanbeusedtogetherinthesamemesh.Thetotalnumberofnodeswillbeequaltothetotalnumberofelementsplusoneadditionalnodepereachdiscontinuouselement.Thecoefficientciisequalto0.5forthenodesondiscontinuouselements.NearlySingularIntegrals高斯數(shù)值積分公式的誤差:
致密封頂層高溫陶瓷層過渡層氧化層粘結(jié)層基體氧化層過渡層粘結(jié)層9qm—高斯積分點數(shù)e—積分精度f—被積函數(shù)p為被積函數(shù)的奇異性階數(shù),由表征,表示邊界單元在第個積分方向上的長度,R表示源點到邊界單元的最小距離,為積分精度。在大量數(shù)值調(diào)查結(jié)果的基礎(chǔ)上,得出了下列確定高斯點數(shù)的實用公式(Gao&Davies,2002):式中重新整理后可得:3.單元子分法線單元1-2的子單元劃分示意圖幾乎奇異積分計算方法1.解析積分法2.積分變換法算例分析具有兩層涂層材料的圓柱形剛性基體外涂層楊氏模量與內(nèi)涂層楊氏模量的比值為1/2,內(nèi)外涂層的泊松比相同,采用平面應(yīng)力條件計算。解析解:A點和B點的徑向應(yīng)力隨外涂層厚度的變化
最大邊界元所需劃分的子單元數(shù)目QuadraticandHigherOrderElementsItisusuallymoreconvenientforarbitrarygeometriestoimplementsometypeofcurvilinearelements.Thesimplestofthesearethethreenodedquadraticelements.AfterdiscretizingtheboundaryintoaseriesofNelements,theboundaryintegralequationcanbewrittenasinwhich,theindexirepresentsthesourcepointcollocatingatnodei.Thepotentiala
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車維修工資格考試重要知識試題及答案
- 普通手術(shù)護理工作規(guī)范
- 汽車發(fā)動機頻繁故障的原因分析試題及答案
- 江西省景德鎮(zhèn)市2021-2022學(xué)年高一下學(xué)期期中生物試卷(含答案)
- 利用網(wǎng)絡(luò)資源備考2024年汽車維修工考試的策略與試題及答案
- 育才中學(xué)數(shù)學(xué)試題及答案
- 校園地面彩繪課件
- 小學(xué)一年級語文試題前瞻及答案
- 小學(xué)六年級語文考前模擬試題及答案
- 2024年語文考試真題試題及答案
- 2023北京海淀初一(下)期末英語試卷含答案
- 內(nèi)蒙古達茂旗明水元墓出土絲織品的初步研究
- 質(zhì)量手冊前言部分201007
- 寄生蟲圖片識別
- 中國移動網(wǎng)絡(luò)資源管理辦法(2016年版)
- 總包(外墻)向涂料單位移交單
- 大學(xué)生心理健康教育(蘭州大學(xué)版)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 外包鋼加固法
- 監(jiān)護儀的測量原理講稿專項課件
- 煤礦常見地質(zhì)構(gòu)造-課件
- 學(xué)校“中華古詩詞大賽”備考試題庫(300題各題型)
評論
0/150
提交評論