版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
導數(shù)題技巧總結(jié)初中第1篇導數(shù)題技巧總結(jié)初中第1篇蘇教版導數(shù)知識點總結(jié)
蘇教版導數(shù)知識點總結(jié)
考試內(nèi)容:
導數(shù)的背影.
導數(shù)的概念.
多項式函數(shù)的導數(shù).
利用導數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.
考試要求:
(1)了解導數(shù)概念的某些實際背景.
(2)理解導數(shù)的幾何意義.
(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的`導數(shù)公式,會求多項式函數(shù)的導數(shù).
(4)理解極大值、極小值、最大值、最小值的概念,并會用導數(shù)求多項式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值.
(5)會利用導數(shù)求某些簡單實際問題的最大值和最小值.
知識要點:
知識要點:
導數(shù)題技巧總結(jié)初中第2篇高中導數(shù)知識點總結(jié)
導數(shù)的定義:
當自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)-f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導,稱之為f在x0點的導數(shù)(或變化率)。
函數(shù)y=f(x)在x0點的導數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點的切線斜率(導數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。
一般地,我們得出用函數(shù)的導數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設y=f(x)在(a,b)內(nèi)可導。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當f'(x)=0時,y=f(x)有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值
求導數(shù)的步驟:
求函數(shù)y=f(x)在x0處導數(shù)的步驟:
①求函數(shù)的增量Δy=f(x0+Δx)—f(x0)
②求平均變化率
③取極限,得導數(shù)。
導數(shù)公式:
①C'=0(C為常數(shù)函數(shù));
②(x^n)'=nx^(n—1)(n∈Q*);熟記1/X的導數(shù)
③(sinx)'=cosx;(cosx)'=—sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2—(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)'=tanxsecx(cscx)'=—cotxcscx(arcsinx)'=1/(1—x^2)^1/2(arccosx)'=—1/(1—x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=—1/(1+x^2)(arcsecx)'=1/(|x|(x^2—1)^1/2)(arccscx)'=—1/(|x|(x^2—1)^1/2)
④(sinhx)'=hcoshx(coshx)'=—hsinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=—1/(sinhx)^2=—(cschx)^2(sechx)'=—tanhxsechx(cschx)'=—cothxcschx(arsinhx)'=1/(x^2+1)^1/2(arcoshx)'=1/(x^2—1)^1/2(artanhx)'=1/(x^2—1)(|x|<1)(arcothx)'=1/(x^2—1)(|x|>1)(arsechx)'=1/(x(1—x^2)^1/2)(arcschx)'=1/(x(1+x^2)^1/2)
⑤(e^x)'=e^x;(a^x)'=a^xlna(ln為自然對數(shù))(Inx)'=1/x(ln為自然對數(shù))(logax)'=(xlna)^(—1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(—1)(1/x)'=—x^(—2)
導數(shù)的應用:
1.函數(shù)的單調(diào)性
(1)利用導數(shù)的符號判斷函數(shù)的增減性利用導數(shù)的符號判斷函數(shù)的增減性,這是導數(shù)幾何意義在研究曲線變化規(guī)律時的一個應用,它充分體現(xiàn)了數(shù)形結(jié)合的思想。一般地,在某個區(qū)間(a,b)內(nèi),如果f'(x)>0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減。如果在某個區(qū)間內(nèi)恒有f'(x)=0,則f(x)是常數(shù)函數(shù)。注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的`充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。
(2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1。定義最基礎求法2。復合函數(shù)單調(diào)性)①確定f(x)的定義域;②求導數(shù);③由(或)解出相應的x的范圍。當f'(x)>0時,f(x)在相應區(qū)間上是增函數(shù);當f'(x)<0時,f(x)在相應區(qū)間上是減函數(shù)。
2.函數(shù)的極值
(1)函數(shù)的極值的判定
①如果在兩側(cè)符號相同,則不是f(x)的極值點;
②如果在附近的左右側(cè)符號不同,那么,是極大值或極小值。
3.求函數(shù)極值的步驟
①確定函數(shù)的定義域;②求導數(shù);③在定義域內(nèi)求出所有的駐點與導數(shù)不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值。
4.函數(shù)的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念。
(2)求f(x)在[a,b]上的最大值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。
5.生活中的優(yōu)化問題
生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優(yōu)化問題,優(yōu)化問題也稱為最值問題。解決這些問題具有非?,F(xiàn)實的意義。這些問題通??梢赞D(zhuǎn)化為數(shù)學中的函數(shù)問題,進而轉(zhuǎn)化為求函數(shù)的最大(小)值問題。
導數(shù)題技巧總結(jié)初中第3篇導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義:在點處的導數(shù)記作.
2.導數(shù)的幾何物理意義:曲線在點處切線的斜率
①=f/(x0)表示過曲線=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;
(3)求可導函數(shù)最大值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
導數(shù)與物理,幾何,代數(shù)關系密切:在幾何中可求切線;在代數(shù)中可求瞬時變化率;在物理中可求速度、加速度。學好導數(shù)至關重要,一起來學習高二數(shù)學導數(shù)的定義知識點歸納吧!
導數(shù)是微積分中的重要基礎概念。當函數(shù)=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質(zhì)上,求導就是一個求極限的過程,導數(shù)的四則運算法則也于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
設函數(shù)=f(x)在點x0的某個鄰域內(nèi)有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當Δx→0時極限存在,則稱函數(shù)=f(x)在點x0處可導,并稱這個極限為函數(shù)=f(x)在點x0處的導數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0
導數(shù)題技巧總結(jié)初中第4篇1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯角相等,兩直線平行
11同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯角相等
14兩直線平行,同旁內(nèi)角互補
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等?
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
導數(shù)題技巧總結(jié)初中第5篇1.導數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細微);
(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于次多項式的導數(shù)問題屬于較難類型。
2.關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。
3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
知識整合
1.導數(shù)概念的理解。
2.利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的最大值與最小值。
復合函數(shù)的求導法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復合函數(shù)的求導法則,接下來對法則進行了證明。
3.要能正確求導,必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導公式以及和、差、積、商的求導法則,復合函數(shù)的求導法則。
(2)對于一個復合函數(shù),一定要理清中間的復合關系,弄清各分解函數(shù)中應對哪個變量求導
導數(shù)題技巧總結(jié)初中第6篇相對來說導數(shù)還是比較容易的,因為它的幾乎所有題目,都是一個套路。
首先要把幾個常用求導公式記清楚;
然后在解題時先看
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度催告函制作與執(zhí)行保障合同2篇
- 二零二五年度出租車行業(yè)人才培養(yǎng)與輸送合同4篇
- 2025年度職業(yè)規(guī)劃培訓保密及信息共享合同3篇
- 2025年度個人心理咨詢與培訓合同2篇
- 二零二五年度重型卡車交易擔保服務合同范本4篇
- 2025年度數(shù)據(jù)中心裝修與設施升級合同4篇
- 二零二五年度船舶建造與港口設施建設合同范本4篇
- 二零二五年度大理石石材環(huán)保技術(shù)研發(fā)與應用合同4篇
- 2025年度車輛質(zhì)押融資與二手車交易服務合同4篇
- 二零二四年度專業(yè)皮革清洗與護理合同2篇
- 開展課外讀物負面清單管理的具體實施舉措方案
- 2025年云南中煙工業(yè)限責任公司招聘420人高頻重點提升(共500題)附帶答案詳解
- 2025-2030年中國洗衣液市場未來發(fā)展趨勢及前景調(diào)研分析報告
- 2024解析:第三章物態(tài)變化-基礎練(解析版)
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 《AM聚丙烯酰胺》課件
- 系統(tǒng)動力學課件與案例分析
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 客戶分級管理(標準版)課件
- GB/T 32399-2024信息技術(shù)云計算參考架構(gòu)
- 人教版數(shù)學七年級下冊數(shù)據(jù)的收集整理與描述小結(jié)
評論
0/150
提交評論