




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,矩形的中心為直角坐標(biāo)系的原點,各邊分別與坐標(biāo)軸平行,其中一邊交軸于點,交反比例函數(shù)圖像于點,且點是的中點,已知圖中陰影部分的面積為,則該反比例函數(shù)的表達式是()A. B. C. D.2.式子有意義的的取值范圍()A.x≥4 B.x≥2 C.x≥0且x≠4 D.x≥0且x≠23.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,且E為OB的中點,∠CDB=30°,CD=4,則陰影部分的面積為()A.π B.4π C.π D.π4.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=25.如圖,AB為⊙O的弦,半徑OC交AB于點D,AD=DB,OC=5,OD=3,則AB的長為()A.8 B.6 C.4 D.36.下列事件中,屬于必然事件的是()A.小明買彩票中獎 B.投擲一枚質(zhì)地均勻的骰子,擲得的點數(shù)是奇數(shù)C.等腰三角形的兩個底角相等 D.是實數(shù),7.已知,,是反比例函數(shù)的圖象上的三點,且,則、、的大小關(guān)系是()A. B. C. D.8.若反比例函數(shù)的圖象過點(-2,1),則這個函數(shù)的圖象一定過點()A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)9.如圖,我國傳統(tǒng)文化中的“福祿壽喜”圖由四個圖案構(gòu)成,這四個圖案中是中心對稱圖形的是()A. B. C. D.10.已知銳角α,且sinα=cos38°,則α=()A.38° B.62° C.52° D.72°11.如圖已知CD為⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數(shù)是60°,則∠C的度數(shù)是()A.25° B.40° C.30° D.50°12.如圖,點在反比例函數(shù)的圖象上,過點的直線與軸,軸分別交于點,,且,的面積為,則的值為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,是以點為圓心的圓形紙片的直徑,弦于點,.將陰影部分沿著弦翻折壓平,翻折后,弧對應(yīng)的弧為,則點與弧所在圓的位置關(guān)系為____________.14.如圖,把直角三角板的直角頂點放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點、.量得,,則該圓玻璃鏡的半徑是__________.15.已知∠A=60°,則tanA=_____.16.某商品原售價300元,經(jīng)過連續(xù)兩次降價后售價為260元,設(shè)平均每次降價的百分率為x,則滿足x的方程是______.17.計算:的結(jié)果為____________.18.方程的解是_____________.三、解答題(共78分)19.(8分)已知拋物線y=x2﹣2x﹣3與x軸交于點A、B,與y軸交于點C,點D為OC中點,點P在拋物線上.(1)直接寫出A、B、C、D坐標(biāo);(2)點P在第四象限,過點P作PE⊥x軸,垂足為E,PE交BC、BD于G、H,是否存在這樣的點P,使PG=GH=HE?若存在,求出點P坐標(biāo);若不存在,請說明理由.(3)若直線y=x+t與拋物線y=x2﹣2x﹣3在x軸下方有兩個交點,直接寫出t的取值范圍.20.(8分)在邊長為1的小正方形網(wǎng)格中,的頂點均在格點上,將繞點逆時針旋轉(zhuǎn),得到,請畫出.21.(8分)如圖,已知拋物線y=﹣x2+x+4,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點.(1)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由.(2)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求M點的坐標(biāo).22.(10分)如圖,點C在以AB為直徑的半圓⊙O上,AC=BC.以B為圓心,以BC的長為半徑畫圓弧交AB于點D.(1)求∠ABC的度數(shù);(2)若AB=4,求陰影部分的面積.23.(10分)拋物線與軸交于A,B兩點,與軸交于點C,連接BC.(1)如圖1,求直線BC的表達式;(2)如圖1,點P是拋物線上位于第一象限內(nèi)的一點,連接PC,PB,當(dāng)△PCB面積最大時,一動點Q從點P從出發(fā),沿適當(dāng)路徑運動到軸上的某個點G處,再沿適當(dāng)路徑運動到軸上的某個點H處,最后到達線段BC的中點F處停止,求當(dāng)△PCB面積最大時,點P的坐標(biāo)及點Q在整個運動過程中經(jīng)過的最短路徑的長;(3)如圖2,在(2)的條件下,當(dāng)△PCB面積最大時,把拋物線向右平移使它的圖象經(jīng)過點P,得到新拋物線,在新拋物線上,是否存在點E,使△ECB的面積等于△PCB的面積.若存在,請求出點E的坐標(biāo),若不存在,請說明理由.24.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF(1)如圖1,當(dāng)點D在線段BC上時.求證CF+CD=BC;(2)如圖2,當(dāng)點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;①請直接寫出CF,BC,CD三條線段之間的關(guān)系;②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.25.(12分)如圖1,中,,是的中點,平分交于點,在的延長線上且.(1)求證:四邊形是平行四邊形;(2)如圖2若四邊形是菱形,連接,,與交于點,連接,在不添加任何輔助線的情況下,請直接寫出圖2中的所有等邊三角形.26.一次函數(shù)與反比例函數(shù)的圖象相交于A(﹣1,4),B(2,n)兩點,直線AB交x軸于點D.(1)求一次函數(shù)與反比例函數(shù)的表達式;(2)過點B作BC⊥y軸,垂足為C,連接AC交x軸于點E,求△AED的面積S.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)反比例函數(shù)的對稱性以及已知條件,可得矩形的面積是8,設(shè),則,根據(jù),可得,再根據(jù)反比例函數(shù)系數(shù)的幾何意義即可求出該反比例函數(shù)的表達式.【詳解】∵矩形的中心為直角坐標(biāo)系的原點O,反比例函數(shù)的圖象是關(guān)于原點對稱的中心對稱圖形,且圖中陰影部分的面積為8,
∴矩形的面積是8,
設(shè),則,
∵點P是AC的中點,
∴,
設(shè)反比例函數(shù)的解析式為,
∵反比例函數(shù)圖象于點P,
∴,
∴反比例函數(shù)的解析式為.
故選:B.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)系數(shù)的幾何意義,得出矩形的面積是8是解題的關(guān)鍵.2、C【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,就可以求解.【詳解】解:根據(jù)題意得:且,解得:且.故選:C.【點睛】本題考查的知識點為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負數(shù).本題應(yīng)注意在求得取值后應(yīng)排除不在取值范圍內(nèi)的值.3、D【分析】根據(jù)圓周角定理求出∠COB,進而求出∠AOC,再利用垂徑定理以及銳角三角函數(shù)關(guān)系得出OC的長,再結(jié)合扇形面積求出答案.【詳解】解:∵,∴,∴,∵,,∴,,∴,∴陰影部分的面積為,
故選:D.【點睛】本題考查了圓周角定理,垂徑定理,解直角三角形,扇形面積公式等知識點,能求出線段OC的長和∠AOC的度數(shù)是解此題的關(guān)鍵.4、C【解析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是方程,故本選項錯誤;B、方程含有兩個未知數(shù),故本選項錯誤;C、符合一元二次方程的定義,故本選項正確;D、不是整式方程,故本選項錯誤.故選:C.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.5、A【分析】連接OB,根據(jù)⊙O的半徑為5,CD=2得出OD的長,再由垂徑定理的推論得出OC⊥AB,由勾股定理求出BD的長,進而可得出結(jié)論.【詳解】解:連接OB,如圖所示:∵⊙O的半徑為5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=∴AB=2BD=1.故選:A.【點睛】本題主要考查的是圓中的垂徑定理“垂直于弦的直徑平分弦且平分這條弦所對的兩條弧”,掌握垂徑定理是解此題的關(guān)鍵.6、C【分析】由題意根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可判斷選項.【詳解】解:A.小明買彩票中獎,是隨機事件;B.投擲一枚質(zhì)地均勻的骰子,擲得的點數(shù)是奇數(shù),是隨機事件;C.等腰三角形的兩個底角相等,是必然事件;D.是實數(shù),,是不可能事件;故選C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、C【分析】先根據(jù)反比例函數(shù)y=的系數(shù)2>0判斷出函數(shù)圖象在一、三象限,在每個象限內(nèi),y隨x的增大而減小,再根據(jù)x1<x2<0<x3,判斷出y1、y2、y3的大小.【詳解】解:函數(shù)大致圖象如圖,∵k>0,則圖象在第一、三象限,在每個象限內(nèi),y隨x的增大而減小,又∵x1<x2<0<x3,∴y2<y1<y3.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征.8、A【解析】先把(-2,1)代入y=求出k得到反比例函數(shù)解析式為y=,然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征,通過計算各點的橫縱坐標(biāo)的積進行判斷.【詳解】把(-2,1)代入y=得k=-2×1=-2,
所以反比例函數(shù)解析式為y=,
因為2×(-1)=-2,2×1=2,-2×(-1)=2,1×2=2,
所以點(2,-1)在反比例函數(shù)y=的圖象上.
故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.9、B【解析】根據(jù)中心對稱圖形的概念逐一判斷即可.【詳解】A.不是中心對稱圖形,故該選項不符合題意,B.是中心對稱圖形,符合題意,C.不是中心對稱圖形,故該選項不符合題意,D.不是中心對稱圖形,故該選項不符合題意,故選:B.【點睛】本題考查中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.10、C【分析】根據(jù)一個角的正弦值等于它的余角的余弦值求解即可.【詳解】∵sinα=cos38°,
∴α=90°-38°=52°.
故選C.【點睛】本題考查了銳角三角函數(shù)的性質(zhì),掌握正余弦的轉(zhuǎn)換方法:一個角的正弦值等于它的余角的余弦值.11、C【分析】利用平行線的性質(zhì)求出∠AOD,然后根據(jù)圓周角定理可得答案.【詳解】解:∵DE∥OA,∴∠AOD=∠D=60°,∴∠C=∠AOD=30°,故選:C.【點睛】本題考查圓周角定理,平行線的性質(zhì),解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.12、D【分析】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,得AO=OD,CD=2OB,進而得的面積為4,即可得到答案.【詳解】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,∵,∴AO=OD,∴OB是?ADC的中位線,∴CD=2OB,∵的面積為,∴的面積為4,∵點在反比例函數(shù)的圖象上,∴k=2×4=8,故選D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)k的幾何意義,添加輔助線,求出的面積,是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、點在圓外【分析】連接OC,作OF⊥AC于F,交弧于G,判斷OF與FG的數(shù)量關(guān)系即可判斷點和圓的位置關(guān)系.【詳解】解:如圖,連接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴點與弧所在圓的位置關(guān)系是點在圓外.故答案是:點在圓外.【點睛】本題考查了點和圓位置關(guān)系,利用垂徑定理進行有關(guān)線段的計算,通過構(gòu)造直角三角形是解題的關(guān)鍵.14、1.【解析】解:∵∠MON=90°,∴為圓玻璃鏡的直徑,,∴半徑為.故答案為:1.15、【分析】直接利用特殊角的三角函數(shù)值得出答案.【詳解】tanA=tan60°=.故答案為:.【點睛】本題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.16、.【分析】根據(jù)降價后的售價=降價前的售價×(1-平均每次降價的百分率),可得降價一次后的售價是,降價一次后的售價是,再根據(jù)經(jīng)過連續(xù)兩次降價后售價為260元即得方程.【詳解】解:由題意可列方程為故答案為:.【點睛】本題考查一元二次方程的實際應(yīng)用,增長率問題,解題的關(guān)鍵是讀懂題意,找到等量關(guān)系,正確列出方程,要注意增長的基礎(chǔ).17、【分析】根據(jù)二次根式的乘法法則得出.【詳解】.故答案為:.【點睛】本題主要考查了二次根式的乘法運算.二次根式的乘法法則:.18、x1=3,x2=-1【分析】利用因式分解法解方程.【詳解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案為:x1=3,x2=-1.【點睛】此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的方法解方程是關(guān)鍵.三、解答題(共78分)19、(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1【分析】(1)可通過二次函數(shù)的解析式列出方程,即可求出相關(guān)點的坐標(biāo);(2)存在,先求出直線BC和直線BD的解析式,設(shè)點P的坐標(biāo)為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),列出等式方程,即可求出點P坐標(biāo);(3)求出直線y=x+t經(jīng)過點B時t的值,再列出當(dāng)直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時的方程,使根的判別式為0,求出t的值,即可寫出t的取值范圍.【詳解】解:(1)在y=x2﹣2x﹣3中,當(dāng)x=0時,y=﹣3;當(dāng)y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,﹣3),∵D為OC的中點,∴D(0,﹣);(2)存在,理由如下:設(shè)直線BC的解析式為y=kx﹣3,將點B(3,0)代入y=kx﹣3,解得k=1,∴直線BC的解析式為y=x﹣3,設(shè)直線BD的解析式為y=mx﹣,將點B(3,0)代入y=mx﹣,解得m=,∴直線BD的解析式為y=x﹣,設(shè)點P的坐標(biāo)為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),∴EH=﹣x+,HG=x﹣﹣(x﹣3)=﹣x+,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,當(dāng)EH=HG=GP時,﹣x+=﹣x2+3x,解得x1=,x2=3(舍去),∴點P的坐標(biāo)為(,﹣);(3)當(dāng)直線y=x+t經(jīng)過點B時,將點B(3,0)代入y=x+t,得,t=﹣1,當(dāng)直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時,方程x+t=x2﹣2x﹣3只有一個解,即x2﹣x﹣3﹣t=0,△=()2﹣4(﹣3﹣t)=0,解得t=﹣,∴由圖2可以看出,當(dāng)直線y=x+t與拋物線y=x2﹣2x﹣3在x軸下方有兩個交點時,t的取值范圍為:﹣<t<﹣1時.【點睛】本題考查了二次函數(shù)與一次函數(shù)的綜合,涉及了求二次函數(shù)與坐標(biāo)軸的交點坐標(biāo)、一次函數(shù)的解析式、解一元二次方程、確定一次函數(shù)與二次函數(shù)的圖像的交點個數(shù),靈活運用一次函數(shù)與二次函數(shù)的圖像與性質(zhì)是解題的關(guān)鍵.20、見解析【分析】根據(jù)題意(將繞點逆時針旋轉(zhuǎn)即可畫出圖形;【詳解】解:如圖所示,即為所求.【點睛】此題考查了旋轉(zhuǎn)變換.注意抓住旋轉(zhuǎn)中心與旋轉(zhuǎn)方向是關(guān)鍵.21、(1)存在點P,使△PBC的面積最大,最大面積是2;(2)M點的坐標(biāo)為(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【分析】(1)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),由點B、C的坐標(biāo),利用待定系數(shù)法即可求出直線BC的解析式,假設(shè)存在,設(shè)點P的坐標(biāo)為(x,﹣x2+x+1),過點P作PD//y軸,交直線BC于點D,則點D的坐標(biāo)為(x,﹣x+1),PD=﹣x2+2x,利用三角形的面積公式即可得出S△PBC關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;(2)設(shè)點M的坐標(biāo)為(m,﹣m2+m+1),則點N的坐標(biāo)為(m,﹣m+1),進而可得出MN=|﹣m2+2m|,結(jié)合MN=3即可得出關(guān)于m的含絕對值符號的一元二次方程,解之即可得出結(jié)論.【詳解】解:(1)當(dāng)x=0時,y=﹣x2+x+1=1,∴點C的坐標(biāo)為(0,1).設(shè)直線BC的解析式為y=kx+b(k≠0).將B(8,0)、C(0,1)代入y=kx+b,.,解得:,∴直線BC的解析式為y=﹣x+1.假設(shè)存在,設(shè)點P的坐標(biāo)為(x,﹣x2+x+1)(0<x<8),過點P作PD//y軸,交直線BC于點D,則點D的坐標(biāo)為(x,﹣x+1),如圖所示.∴PD=﹣x2+x+1﹣(﹣x+1)=﹣x2+2x,∴S△PBC=PD?OB=×8?(﹣x2+2x)=﹣x2+8x=﹣(x﹣1)2+2.∵﹣1<0,∴當(dāng)x=1時,△PBC的面積最大,最大面積是2.∵0<x<8,∴存在點P,使△PBC的面積最大,最大面積是2.(2)設(shè)點M的坐標(biāo)為(m,﹣m2+m+1),則點N的坐標(biāo)為(m,﹣m+1),∴MN=|﹣m2+m+1﹣(﹣m+1)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.當(dāng)0<m<8時,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴點M的坐標(biāo)為(2,6)或(6,1);當(dāng)m<0或m>8時,有﹣m2+2m+3=0,解得:m3=1﹣2,m1=1+2,∴點M的坐標(biāo)為(1﹣2,﹣1)或(1+2,﹣﹣1).綜上所述:M點的坐標(biāo)為(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【點睛】本題考查了二次函數(shù)的應(yīng)用,綜合性比較強,結(jié)合圖形掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.22、(1)∠ABC=45°;(2)【分析】(1)根據(jù)圓周角定理得到∠ACB=90°,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】解:(1)∵AB為半圓⊙O的直徑,∴∠ACB=90°,∵AC=BC,∴∠ABC=45°;(2)∵AB=4,∴BC=∴陰影部分的面積=.【點睛】本題考查了扇形面積的計算,圓周角定理,等腰直角三角形的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.23、(1)(2)點Q按照要求經(jīng)過的最短路徑長為(3)存在,滿足條件的點E有三個,即(,),(,),(,)【分析】(1)先求出點,,的坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;(2)先確定出,再利用三角形的面積公式得出,即可得出結(jié)論;(3)先確定出平移后的拋物線解析式,進而求出,在判斷出建立方程即可得出結(jié)論.【詳解】解:(1)令,得,∴,.∴A(,0),B(,0).令,得.∴C(0,3).設(shè)直線BC的函數(shù)表達式為,把B(,0)代入,得.解得,.所以直線BC的函數(shù)表達式為.(2)過P作PD⊥軸交直線BC于M.∵直線BC表達式為,設(shè)點M的坐標(biāo)為,則點P的坐標(biāo)為.則.∴.∴此時,點P坐標(biāo)為(,).根據(jù)題意,要求的線段PG+GH+HF的最小值,只需要把這三條線段“搬”在一直線上.如圖1,作點P關(guān)于軸的對稱點,作點F關(guān)于軸的對稱點,連接,交軸于點G,交軸于點H.根據(jù)軸對稱性可得,.此時PG+GH+HF的最小值=.∵點P坐標(biāo)為(,),∴點的坐標(biāo)為(,).∵點F是線段BC的中點,∴點F的坐標(biāo)為(,).∴點的坐標(biāo)為(,).∵點,P兩點的橫坐相同,∴⊥軸.∵,P兩點關(guān)于軸對稱,∴⊥軸.∴.∴.即點Q按照要求經(jīng)過的最短路徑長為.(3)如圖2,在拋物線中,令,,或,由平移知,拋物線向右平移到,則平移了個單位,,設(shè)點,過點作軸交于,直線的解析式為,,的面積等于的面積,,由(2)知,,,,或或或(舍,,或,或,.綜上所述,滿足條件的點E有三個,即(,),(,),(,).【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積公式,利用軸對稱確定最短路徑,平移的性質(zhì),解絕對值方程,解本題的關(guān)鍵是確定出和.24、(1)證明見解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得.(1)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質(zhì)即可求得DF的長,則OC即可求得.【詳解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- WPS數(shù)據(jù)整合的重要性試題及答案
- 模塊化設(shè)計的重要性與實現(xiàn)的試題及答案
- 整體計劃中的現(xiàn)代漢語考試試題及答案
- 常用漢語表達的實際應(yīng)用試題及答案
- 行政法學(xué)的流派與爭鳴試題及答案
- 公司戰(zhàn)略實施計劃試題及答案
- 數(shù)字化轉(zhuǎn)型中的技術(shù)選型試題及答案
- 信息處理與決策支持試題及答案
- 現(xiàn)代漢語的語音特色分析試題及答案
- 產(chǎn)品迭代與用戶需求試題及答案
- 浙江省溫州市2025屆高三下學(xué)期三模政治試題 含解析
- 車輛超速考試試題及答案
- 成人患者營養(yǎng)不良診斷與應(yīng)用指南(2025版)解讀課件
- 2025年一級注冊建筑師歷年真題答案
- 十五五時期經(jīng)濟社會發(fā)展座談會十五五如何謀篇布局
- 初中電與磁試題及答案
- 浙江開放大學(xué)2025年《行政復(fù)議法》形考作業(yè)1答案
- 國家開放大學(xué)《西方經(jīng)濟學(xué)(本)》章節(jié)測試參考答案
- 湖南省炎德英才名校聯(lián)合體2025屆高考考前仿真聯(lián)考二英語+答案
- 重慶地理會考試卷題及答案
- 福建省三明市2025年普通高中高三畢業(yè)班五月質(zhì)量檢測地理試卷及答案(三明四檢)
評論
0/150
提交評論