江西省撫州市名校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
江西省撫州市名校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
江西省撫州市名校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
江西省撫州市名校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
江西省撫州市名校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.四張分別畫有平行四邊形、等腰直角三角形、正五邊形、圓的卡片,它們的背面都相同,現(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B. C. D.12.若關(guān)于x的一元二次方程有兩個實數(shù)根,則k的取值范圍是()A. B. C. D.3.下列說法中,正確的是()A.被開方數(shù)不同的二次根式一定不是同類二次根式;B.只有被開方數(shù)完全相同的二次根式才是同類二次根式;C.和是同類二次根式;D.和是同類二次根式.4.過反比例函數(shù)圖象上一點作兩坐標軸的垂線段,則它們與兩坐標軸圍成的四邊形面積為()A.-6 B.-3 C.3 D.65.已知⊙O的半徑為6cm,OP=8cm,則點P和⊙O的位置關(guān)系是()A.點P在圓內(nèi) B.點P在圓上 C.點P在圓外 D.無法判斷6.某人沿傾斜角為β的斜坡前進100m,則他上升的最大高度是()mA. B. C. D.7.如圖,AB為⊙O的直徑,CD為⊙O上的兩個點(CD兩點分別在直徑AB的兩側(cè)),連接BD,AD,AC,CD,若∠BAD=56°,則∠C的度數(shù)為()A.56° B.55°C.35° D.34°8.在△ABC中,tanC=,cosA=,則∠B=()A.60° B.90° C.105° D.135°9.關(guān)于x的一元二次方程x2+bx﹣10=0的一個根為2,則b的值為()A.1 B.2 C.3 D.710.已知如圖中,點為,的角平分線的交點,點為延長線上的一點,且,,若,則的度數(shù)是().A. B. C. D.二、填空題(每小題3分,共24分)11.在平面直角坐標系中,點P(3,﹣5)關(guān)于原點對稱的點的坐標是_____.12.如圖,在大樓AB的樓頂B處測得另一棟樓CD底部C的俯角為60度,已知A、C兩點間的距離為15米,那么大樓AB的高度為_____米.(結(jié)果保留根號)13.一個多邊形的內(nèi)角和為900°,這個多邊形的邊數(shù)是____.14.如圖:⊙A、⊙B、⊙C兩兩不相交,且半徑均為1,則圖中三個陰影扇形的面積之和為.15.如圖,點O是△ABC的內(nèi)切圓的圓心,若∠A=100°,則∠BOC為_____.16.已知關(guān)于x的方程a(x+m)2+b=0(a、b、m為常數(shù),a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.17.一枚質(zhì)地均勻的骰子,六個面分別標有數(shù)字1,2,3,4,5,6,拋擲一次,恰好出現(xiàn)“正面朝上的數(shù)字是5”的概率是___________.18.如圖所示:點A是反比例函數(shù),圖像上的點,AB⊥x軸于點B,AC⊥y軸于點C,,則k=______.三、解答題(共66分)19.(10分)為了測量山坡上的電線桿的高度,數(shù)學(xué)興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結(jié)果保留整數(shù))20.(6分)如圖,在平面直角坐標xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象都經(jīng)過點A(2,﹣2).(1)分別求這兩個函數(shù)的表達式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.21.(6分)解方程:x2-4x-7=0.22.(8分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.23.(8分)在平面直角坐標系中,直線分別與,軸交于,兩點,點在線段上,拋物線經(jīng)過,兩點,且與軸交于另一點.(1)求點的坐標(用只含,的代數(shù)式表示);(2)當時,若點,均在拋物線上,且,求實數(shù)的取值范圍;(3)當時,函數(shù)有最小值,求的值.24.(8分)已知:如圖,AB為⊙O的直徑,OD∥AC.求證:點D平分.25.(10分)某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應(yīng)市場變化調(diào)整第一個月的銷售價,預(yù)計銷售定價每增加1元,銷售量將減少10套.(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表.時間第一個月第二個月每套銷售定價(元)銷售量(套)(2)若商店預(yù)計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少;(3)求當4≤x≤6時第二個月銷售利潤的最大值.26.(10分)如圖,四邊形ABCD是矩形,AB=6,BC=4,點E在邊AB上(不與點A、B重合),過點D作DF⊥DE,交邊BC的延長線于點F.(1)求證:△DAE∽△DCF.(2)設(shè)線段AE的長為x,線段BF的長為y,求y與x之間的函數(shù)關(guān)系式.(3)當四邊形EBFD為軸對稱圖形時,則cos∠AED的值為.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】先找出卡片上所畫的圖形是中心對稱圖形的個數(shù),再除以總數(shù)即可.【詳解】解:∵四張卡片中中心對稱圖形有平行四邊形、圓,共2個,∴卡片上所畫的圖形恰好是中心對稱圖形的概率為,故選B.【點睛】此題考查概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,關(guān)鍵是找出卡片上所畫的圖形是中心對稱圖形的個數(shù).2、D【解析】運用根的判別式和一元二次方程的定義,組成不等式組即可解答【詳解】解:∵關(guān)于x的一元二次方程(k﹣1)x2+x+1=0有兩個實數(shù)根,∴,解得:k≤且k≠1.故選:D.【點睛】此題考查根的判別式和一元二次方程的定義,掌握根的情況與判別式的關(guān)系是解題關(guān)鍵3、D【分析】根據(jù)同類二次根式的定義逐項分析即可.【詳解】解:A、被開方數(shù)不同的二次根式若化簡后被開方數(shù)相同,就是同類二次根式,故不正確;B.化成最簡二次根式后,被開方數(shù)完全相同的二次根式才是同類二次根式,故不正確;C.和的被開方數(shù)不同,不是同類二次根式,故不正確;D.=和=,是同類二次根式,正確故選D.【點睛】本題考查了同類二次根式的定義,熟練掌握同類二次根式的定義是解答本題的關(guān)鍵.化成最簡二次根式后,如果被開方式相同,那么這幾個二次根式叫做同類二次根式.4、D【分析】根據(jù)反比例函數(shù)的幾何意義可知,矩形的面積為即為比例系數(shù)k的絕對值,即可得出答案.【詳解】設(shè)B點坐標為(x,y),由函數(shù)解析式可知,xy=k=-6,則可知S矩形ABCO=|xy|=|k|=6,故選:D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,關(guān)鍵是理解圖中矩形的面積為即為比例系數(shù)k的絕對值.5、C【分析】根據(jù)點與圓的位置關(guān)系即可求解.【詳解】∵⊙O的半徑為6cm,OP=8cm,∴點P到圓心的距離OP=8cm,大于半徑6cm,∴點P在圓外,故選:C.【點睛】本題考查了點與圓的位置關(guān)系:設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.6、B【分析】設(shè)他上升的最大高度是hm,根據(jù)坡角及三角函數(shù)的定義即可求得結(jié)果.【詳解】設(shè)他上升的最大高度是hm,由題意得,解得故選:B.7、D【分析】利用直徑所對的圓周角是可求得的度數(shù),根據(jù)同弧所對的的圓周角相等可得∠C的度數(shù).【詳解】解:AB為⊙O的直徑,點D為⊙O上的一個點故選:D【點睛】本題考查了圓周角的性質(zhì),熟練掌握圓周角的相關(guān)性質(zhì)是解題的關(guān)鍵.8、C【分析】直接利用特殊角的三角函數(shù)值得出∠C=30°,∠A=45°,進而得出答案.【詳解】解:∵tanC=,cosA=,

∴∠C=30°,∠A=45°,

∴∠B=180°-∠C-∠A=105°.

故選:C.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.9、C【解析】根據(jù)一元二次方程的解的定義,把x=2代入方程得到關(guān)于b的一次方程,然后解一次方程即可.【詳解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故選C.點睛:本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.10、C【分析】連接BO,證O是△ABC的內(nèi)心,證△BAO≌△DAO,得∠D=∠ABO,根據(jù)三角形外角性質(zhì)得∠ACO=∠BCO=∠D+∠COD=2∠D,即∠ABC=∠ACO=∠BCO,再推出∠OAD+∠D=180°-138°=42°,得∠BAC+∠ACO=84°,根據(jù)三角形內(nèi)角和定理可得結(jié)果.【詳解】連接BO,由已知可得因為AO,CO平分∠BAC和∠BCA所以O(shè)是△ABC的內(nèi)心所以∠ABO=∠CBO=∠ABC因為AD=AB,OA=OA,∠BAO=∠DAO所以△BAO≌△DAO所以∠D=∠ABO所以∠ABC=2∠ABO=2∠D因為OC=CD所以∠D=∠COD所以∠ACO=∠BCO=∠D+∠COD=2∠D所以∠ABC=∠ACO=∠BCO因為∠AOD=138°所以∠OAD+∠D=180°-138°=42°所以2(∠OAD+∠D)=84°即∠BAC+∠ACO=84°所以∠ABC+∠BCO=180°-(∠BAC+∠ACO)=180°-84°=96°所以∠ABC=96°=48°故選:C【點睛】考核知識點:三角形的內(nèi)心.利用全等三角形性質(zhì)和角平分線性質(zhì)和三角形內(nèi)外角定理求解是關(guān)鍵.二、填空題(每小題3分,共24分)11、(﹣3,5)【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關(guān)于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關(guān)于原點的兩個點的坐標變化規(guī)律,掌握兩個點關(guān)于原點對稱時,它們的坐標符號相反,是解題的關(guān)鍵.12、【分析】由解直角三角形,得,即可求出AB的值.【詳解】解:根據(jù)題意,△ABC是直角三角形,∠A=90°,∴,∴;∴大樓AB的高度為米.故答案為:.【點睛】此題考查了解直角三角形的應(yīng)用——仰角俯角問題,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵.13、1

【分析】根據(jù)多邊形內(nèi)角和定理:(n﹣2)×180°,列方程解答出即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形內(nèi)角和定理得:(n﹣2)×180°=900°,解得n=1.故答案為:1【點睛】本題主要考查了多邊形內(nèi)角和定理的應(yīng)用,熟記多邊形內(nèi)角和公式并準確計算是解題的關(guān)鍵.14、.【解析】試題分析:根據(jù)三角形的內(nèi)角和是180°和扇形的面積公式進行計算.試題解析:∵∠A+∠B+∠C=180°,∴陰影部分的面積=.考點:扇形面積的計算.15、140°.【分析】根據(jù)內(nèi)心的定義可知OB、OC為∠ABC和∠ACB的角平分線,根據(jù)三角形內(nèi)角和定理可求出∠OBC+∠OCB的度數(shù),進而可求出∠BOC的度數(shù).【詳解】∵點O是△ABC的內(nèi)切圓的圓心,∴OB、OC為∠ABC和∠ACB的角平分線,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案為:140°【點睛】本題考查了三角形內(nèi)心的定義及三角形內(nèi)角和定理,熟練掌握三角形內(nèi)切圓的圓心是三角形三條角平分線的交點是解題關(guān)鍵.16、x1=0,x4=﹣1.【分析】把后面一個方程中的x+2看作整體,相當于前面一個方程中的x求解.【詳解】解:∵關(guān)于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均為常數(shù),a≠0),∴方程a(x+m+2)2+b=0變形為a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣1.故答案為:x1=0,x4=﹣1.【點睛】此題主要考查一元二次方程的解,解題的關(guān)鍵是熟知整體法的應(yīng)用.17、【分析】“正面朝上的數(shù)字是5”的情況數(shù)除以總情況數(shù)6即為所求的概率.【詳解】解:∵拋擲六個面上分別標有數(shù)字1,2,3,4,5,6的骰子共有6種結(jié)果,其中“正面朝上的數(shù)字是5”的只有1種,

∴“正面朝上的數(shù)字是5”的概率為,

故答案為:.【點睛】此題主要考查了概率公式的應(yīng)用,概率等于所求情況數(shù)與總情況數(shù)之比.18、【分析】根據(jù)題意可以先設(shè)出點A的坐標,然后根據(jù)矩形的面積公式即可求解.【詳解】解:設(shè)點A的坐標為()∵AB⊥x軸于點B,AC⊥y軸于點C,∴AB=,AC=∴解得又反比例函數(shù)經(jīng)過第二象限,∴.故答案為:.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用反比例函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.三、解答題(共66分)19、信號塔的高度約為100米.【分析】延長PQ交直線AB于點M,連接AQ,設(shè)PM的長為x米,先由三角函數(shù)得出方程求出PM,再由三角函數(shù)求出QM,得出PQ的長度即可.【詳解】解:延長交直線于點,連接,如圖所示:則,設(shè)的長為米,在中,,∴米,∴(米),在中,∵,∴,解得:,在中,∵,∴(米),∴(米);答:信號塔的高度約為100米.【點睛】本題考查解直角三角形的應(yīng)用、三角函數(shù);由三角函數(shù)得出方程是解決問題的關(guān)鍵,注意掌握當兩個直角三角形有公共邊時,先求出這條公共邊的長是解答此類題的一般思路.20、(1)反比例函數(shù)表達式為,正比例函數(shù)表達式為;(2),.【解析】試題分析:(1)將點A坐標(2,-2)分別代入y=kx、y=求得k、m的值即可;(2)由題意得平移后直線解析式,即可知點B坐標,聯(lián)立方程組求解可得第四象限內(nèi)的交點C得坐標,可將△ABC的面積轉(zhuǎn)化為△OBC的面積.試題解析:()把代入反比例函數(shù)表達式,得,解得,∴反比例函數(shù)表達式為,把代入正比例函數(shù),得,解得,∴正比例函數(shù)表達式為.()直線由直線向上平移個單位所得,∴直線的表達式為,由,解得或,∵在第四象限,∴,連接,∵,,,.21、【解析】x2-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)2-4×1×(-7)=44>0,∴x=,∴.22、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質(zhì),結(jié)合勾股定理以及三角形面積公式將面積最值轉(zhuǎn)化為線段最值,了解最美三角形的定義,根據(jù)圓心到直線距離最短原則解答本題.(2)本題根據(jù)k的正負分類討論,作圖后根據(jù)最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數(shù),最后利用勾股定理確定點F的坐標,利用待定系數(shù)法求k.(3)本題根據(jù)⊙B在直線兩側(cè)不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數(shù),繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當k<0時,按題意要求作圖并在此基礎(chǔ)作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據(jù)勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根據(jù)勾股定理可得:MF=MO=1,故F(-1,1),將F點代入y=kx可得:.②當k>0時,同理可得k=1.故綜上:.(3)記直線與x、y軸的交點為點D、C,則,,①當⊙B在直線CD右側(cè)時,如下圖所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直線與⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半徑為,∴.當直線CD與⊙B相切時,,因為直線CD與⊙B相離,故BN>,此時BD>2,所以O(shè)B=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此時可利用勾股定理算得BD<,<=,則<<.②當⊙B在直線CD左側(cè)時,同理可得:<<.故綜上:<<或<<.【點睛】本題考查圓與直線的綜合問題,屬于創(chuàng)新題目,此類型題目解題關(guān)鍵在于了解題干所給示例,涉及動點問題時必須分類討論,保證不重不漏,題目若出現(xiàn)最值問題,需要利用轉(zhuǎn)化思想將面積或周長最值轉(zhuǎn)化為線段最值以降低解題難度,求解幾何線段時勾股定理極為常見.23、(1);(2),;(3)或.【分析】(1)在一次函數(shù)中求點A,B的坐標,然后將點C,A坐標代入二次函數(shù)解析式,求得,令y=0,解方程求點D的坐標;(2)由C點坐標確定m的取值范圍,結(jié)合拋物線的對稱性,結(jié)合函數(shù)增減性分析n的取值范圍;(3)利用頂點縱坐標公式求得函數(shù)最小值,然后分情況討論:當點在點的右側(cè)時或做測時,分別求解.【詳解】解:(1)∵直線分別與,軸交于,兩點,∴,.∵拋物線過點和點,∴.∴.令,得.解得,.∴.(2)∵點在線段上,∴.∵,∴,.∴拋物線的對稱軸是直線.在拋物線上取點,使點與點關(guān)于直線對稱.由得.∵點在拋物線上,且,∴由函數(shù)增減性,得,.(3)∵函數(shù)有最小值,∴.①當點在點的右側(cè)時,得,解得.∴,解得,.②當點在點的左側(cè)時,得,解得.∴.解得:,.綜上所述,或.【點睛】本題考查二次函數(shù)的性質(zhì),屬于綜合性題目,掌握待定系數(shù)法解函數(shù)解析式,利用數(shù)形結(jié)合思想解題,注意分類討論是本題的解題關(guān)鍵.24、見解析.【分析】連接BC,根據(jù)圓周角定理求出∠ACB=90°,求出OD⊥BC,根據(jù)垂徑定理求出即可.【詳解】證明:連接CB,∵AB為⊙O的直徑,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD過O,∴點D平分.【點睛】本題考查了圓周角定理和垂徑定理,能正確運用定理進行推理是解此題的關(guān)鍵.25、(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本題先設(shè)第二個月的銷售定價每套增加x元,再分別求出銷售量即可;

(2)本題先設(shè)第二個月的銷售定價每套增加x元,根據(jù)題意找出等量關(guān)系列出方程,再把解得的x代入即可.(3)根據(jù)利潤的表達式化為二次函數(shù)的頂點式,即可解答本題.【詳解】解:(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表:時間第一個月第二個月銷售定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔