版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Advancementsincontinental
powersystemplanningforAfrica
MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023
?IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-605-3
CITATION
IRENA(2024),AdvancementsincontinentalpowersystemplanningforAfrica,InternationalRenewableEnergyAgency,AbuDhabi.
Availablefordownload:
/publications
.
Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat
info@
.
ABOUTIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
ACKNOWLEDGEMENTS
ThisreportwaspreparedbyIRENAincollaborationwiththeInternationalAtomicEnergyAgency(IAEA),undertheguidanceofAsamiMiketaandLarissaPinheiroPupoNogueira(IRENA),bythefollowingauthors:SebastianHendrikSterl(IRENAconsultant),BilalHussain(IRENA),MohamedBassamBenTicha(ex-IRENAconsultant),HimalayaBirShrestha(IRENA),andBrunoMerven(IRENAconsultant).
ThereportbenefitedfromthereviewsandcommentsprovidedbyDanielRusso,NolwaziKhumalo,PaulKomor,AthirNouicerandSeánCollins(IRENA),MarioTot(IAEA),TichakundaSimbiniandTonderayiGumunyu(AUDA-NEPAD),GeorgeGiannakidisandThyrsosHadjicostas(EUGTAF),AlessiaDeVita,GildasSigginiandEneSandraMacharm(GIZ/GET.Transform),MaximilianParzen(PyPSAmeetsEarth),DavideFioriti(PyPSAmeetsEarthandUniversitàdiPisa),MikaelTogebyandcolleagues(DanishEmbassyinEthiopia/EaEnergianalyse),IoannisPappis(SE4All),TomRemyandClaireNicolas(WorldBank),andTrieuMai,AmyRose,PatrickBrownandJarradWright(NREL).
PublicationsandcommunicationssupportwereprovidedbyFrancisField,StephanieClarkeandDariaGazzola.ThereportwaseditedbyJustinFrench-Brooks,withdesignprovidedbyPhoenixDesignAid.
DISCLAIMER
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
IRENA
InternationalRenewableEnergyAgency
Advancementsincontinental
powersystemplanningforAfrica
MethodologicalframeworkoftheAfricanContinentalPowerSystemsMasterplan’sSPLAT-CMPmodel2023
CONTENTS
ABBREVIATIONS 6
ABOUTTHISREPORT 8
1.THESPLAT-CMPMODELFORTHEAFRICANCONTINENTALPOWERSYSTEMS
MASTERPLAN 11
2.ELEMENTSOFSPLAT-CMPMODELDESIGN 13
2.1Powersystemdescription 13
2.2Modellingmethodologyupdates:Constraintsatthesystemandcountrylevel 16
2.3Modellingmethodologyupdates:Powergeneration 20
2.4Modellingmethodologyupdates:Cross-borderpowertransmission 28
2.5Modellingmethodologyupdates:Representationofstorage 31
2.6Summary 32
3.STRATEGIESFORRUNNINGSPLAT-CMPMODELS 34
4.MODELVERSIONCONTROL 39
5.POSSIBLEFUTUREAREASOFWORK/STRATEGIESFORIMPROVEMENT 41
6.CONCLUSION/OUTLOOK 43
DATAAVAILABILITYSTATEMENT 44
ACKNOWLEDGEMENTS 44
REFERENCES 45
APPENDIX 49
4|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
FIGURES
Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynode
intheSPLAT-CMPmodel 14
Figure2ThetranslationofreservoirhydropowerdatafromtheAfREP-hydrodatabasetothe
SPLAT-CMPmodel 22
Figure3:GeospatialoverviewoftheareasforsolarPV,CSP,onshorewindandoffshore
windpowergenerationincludedintheSPLAT-CMPmodelthroughIRENA’s
MSRapproach 26
Figure4(a)Surgeimpedanceloading(inMW)asafunctionofinterconnectorvoltagelevel,
and(b)lineloadability(asafractionofsurgeimpedanceloading)asafunctionof
interconnectorlength 30
Figure5(a)GenericinterconnectorunitcostsasusedinSPLAT-CMP.(b)Efficiencyofgeneric
interconnectorsasusedinSPLAT-CMP,includinglinelossesandconverterlosses 30
Figure6GraphicalrepresentationofthevariousmodellingelementsoftheSPLAT-CMPmodel 33
Figure7TheCFpertimesliceofSouthAfrica’sonshorewindMSRcluster#2 36
Figure8Effectofspatialspreadonweakwindseasons 37
Figure9ScreenshotfromtheSPLAT-CMPrepositoryon 39
TABLES
Table1Overviewofreservemargincontributionsofthevarioustechnologytypesusedin
theSPLAT-CMPmodelfortheCMPprocess 17
Table2Translationofgenericinterconnectordistancecategoriestovoltagelevelcategories
asusedintheSPLAT-CMPmodelsetup 29
Table3Summaryofhowthenumberofvariables,constraintsandnon-zeromatrixelements
changewiththenumberoftimeslicesintheSPLAT-CMPmodelusedfortheCMP 34
BOXES
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise 9
Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c) 10
Box3PotentialmethodstoinvestigatewindvariabilityaspectsintheSPLAT-CMPmodel
forfutureassessments 36
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|5
ABBREVIATIONS
AC
alternatingcurrent
ACEC
AfricanCleanEnergyCorridor
AfREP
AfricanRenewableElectricityProfiles
AfSEM
AfricanSingleElectricityMarket
AU
AfricanUnion
AUDA-NEPAD
AfricanUnionDevelopmentAgency–NewPartnershipforDevelopment
CAPEX
capitalexpenditure
CAPP
CentralAfricanPowerPool
CCGT
closed-cyclegasturbine
CF
capacityfactor
CMP
ContinentalMasterplan
COMELEC
ComitéMaghrébind’électricité
CSP
concentratedsolarpower
DNI
directnormalirradiation
EAPP
EasternAfricaPowerPool
EEZ
ExclusiveEconomicZone
EU
EuropeanUnion
EUGTAF
EuropeanUnionGlobalTechnicalAssistanceFacility
GHI
globalhorizontalirradiation
HFO
heavyfueloil
HVAC
high-voltagealternatingcurrent
HVDC
high-voltagedirectcurrent
IAEA
InternationalAtomicEnergyAgency
IIASA
InternationalInstituteforAppliedSystemsAnalysis
IRENA
InternationalRenewableEnergyAgency
kW
kilowatt
LCOE
levelisedcostofelectricity
LL
lineloadability
MESSAGE
ModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact
MSR
ModelSupplyRegion
6|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
MW
megawatt
MWh
megawatthour
NREL
NationalRenewableEnergyLaboratory(US)
OCGT
open-cyclegasturbine
OSeMOSYS
OpenSourceEnergyModellingSystem
PV
photovoltaics
RCP
RepresentativeConcentrationPathway
RoR
run-of-river
SAPP
SouthernAfricaPowerPool
SIL
surgeimpedanceloading
SM
solarmultiple
SNSP
systemnon-synchronouspenetration
SPLAT
SystemPlanningTest
SSP
SharedSocioeconomicPathway
TW
terawatt
UN
UnitedNations
USD
UnitedStatesdollar
VRE
variablerenewableenergy
WAPP
WestAfricanPowerPool
WETO
WorldEnergyTransitionsOutlook
WACC
weightedaveragecostofcapital
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|7
ABOUTTHISREPORT
ThisreportprovidesdetailedinsightsintothedesignandsetupoftheSystemPlanningTest-ContinentalMasterplan(SPLAT-CMP)model,theunderlyingoptimisationmodeloftheAfricaContinentalMasterPlan(CMP)forelectricitygenerationandtransmission.CMPisaninitiativetaskedtotheAfricanUnionDevelopmentAgency–NewPartnershipforDevelopment(AUDA-NEPAD)aspertherecommendationsadoptedbytheAfricanheadsofstateatthe34thOrdinarysessionoftheAssemblyofHeadsofStateandGovernmentoftheAfricanUnionin2021.Subsequently,inthe37thOrdinarysessionoftheAssembly,theCMPwasformallyadoptedasanAfricanUnionAgenda2063flagshipproject.
TheCMPinitiativewasundertakentosupporttheAUAfricanSingleElectricityMarket(AfSEM)initiativelaunchedinJune2021.TheAfricanpowerpoolsareactivelyinvolvedintheCMPprocesswithaviewtoaligningmodellingandplanningprocesseswithregionalpoliciesandinitiatives.AlongsidethedesignatedstaffofAUDA-NEPAD,theofficialCMPmodellingteamincludesrepresentativesfromWAPP(WestAfricanPowerPool),SAPP(SouthernAfricanPowerPool),EAPP(EasternAfricaPowerPool),CAPP(CentralAfricanPowerPool),COMELEC(ComitéMaghrébind’électricité)membercountries,andEU-GlobalTechnicalAssistanceFacility(EU-GTAF).
IRENAandtheIAEAsupporttheCMPinitiativeasofficiallyendorsedmodellingpartners.
ThefirstCMPexerciseentailedthreeplanninganalyses:(i)demandprojections,(ii)generationandcross-bordertransmissionexpansionoptimisation,and(iii)networkstudies(furtherexplainedinBox1).BasedonagreedtoolselectioncriteriafinalisedduringtheconsultationsthatformedpartoftheCMPprocess(Box2),thestakeholdersselectedIRENAandIAEA’sSPLAT-MESSAGEframeworkforthegenerationandcross-bordertransmissionexpansionanalysis.
Tothisend,IRENAcombineditspre-existingpowersystemcapacityexpansionmodelsfor50Africancountries,1theso-calledSystemPlanningTest(SPLAT)models,intooneSPLAT-AfricamodeltoserveasastartingpointforCMPmodelling.Overthecourseoftwoyears,theCMPmodellingteamreceivedhands-ontrainingfromthemodellingpartnersonthedevelopmentanduseoftheSPLAT-Africamodel.TheCMPprocessentailedmanyvirtualandin-personstakeholderengagementeventsandday-to-dayteamworkamongthestaffofAUDA-NEPAD,thepowerpoolsandNorthAfricancountryrepresentatives.ThisenabledtheCMPmodellingteamtoupdatetheSPLAT-Africamodelintotheso-calledSPLAT-CMPversion2023.Duringtheprocess,themodelwasequippedwithup-to-dateinformationcollectedon48Africancountries.2
ByprovidingadetaileddescriptionofthemethodologybehindtheSPLAT-CMPmodel,thisreportaimstoenhancethetransparencyandthereproducibilityofthemodellingresults.ItwillalsoenabletheCMPstakeholderstobetterunderstandthemodelresultsandinspireitsfutureuseinthenextCMPexercises.The
1AllAfricaexceptMadagascar,Mauritius,theComorosandtheSeychelles.
2AllSPLATcountriesexceptCaboVerde,andS?oToméandPríncipe.
8|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
reportalsocomplementstheeffortsbehindtherecentlydevelopedweb-baseduserguidefortheSPLATinterface,availableat
https://splat-tutorial.readthedocs.io/en/latest/.
TheSPLATinterfaceisanExcelbasedinterfacerequiredtoimplementtheSPLATmodellingframework,aswellastocontrolandvisualisethemodelcontentsandresultsrespectively.
Thefinalmodellingresults–aswellasthemodelinputsandtheirbasis,asfinalisedbytheCMPmodellingteamandagreedwiththebroadstakeholders–aredocumentedinaseparateseriesofreportspreparedwiththefinancialassistanceoftheEuropeanCommission(AUDA-NEPAD,2023a,2023b,2023c).Thereportseriesishostedonlineatthecentraliseddatabase“Mwanga”ofAUDA-NEPAD,developedspecificallytofacilitatedataexchangeamongCMPstakeholdersinthefuture(
/
).
Thisreportisstructuredasfollows:Section1providesanoverallintroductiontotheSPLATmodelframeworkandtherationaleforselectingitforCMPpurposes;Section2describesindetailallnewmodelelementsthatwereintroducedintheSPLAT-CMPmodel;Section3goesontodescribethepracticalitiesofandstrategiesforsettingtimeslicesforrunningtheSPLAT-CMPmodel,allowingforpracticalruntimeswhileretainingadequatespatio-temporalresolution;Section4describesmodelversioncontrol;Section5summarisespossiblestrategiesforfurthermodelimprovement;andSection6concludeswithafutureoutlook.
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise
InthetechnicalplanningforavisionofacontinentallyintegratedAfricanpowergrid,variouselementsneededtobeconsideredseparatelywiththeirownsuitablemodelapproaches.Consequently,inthefirstCMPexercise,AUDA-NEPADwaschargedwithdevelopingthreedistinctpillarsofplanning:
(1)electricitydemandprojectionsforeverycontinentalAfricancountryupto2040
(2)long-termcapacityexpansionplanningscenariosforpowergenerationandcross-bordertransmissioninfrastructureupto2040tomeettheprojecteddemand
(3)networkstudiestoconfirmthetechnicalfeasibilityofthecross-borderinterconnectorsselectedinthecapacityexpansionoptimisationscenarios.
ThedemandassessmentanalysisperformedusingEViewsdefinedthefutureelectricitydemandprojectionsinvariousscenarios.Theseincludedabaselinetrajectoryasreferencecase(AUDA-NEPAD,2023d)andthreealternativescenarios(AUDA-NEPAD,2023e)reflectinglow,mediumandhighaspirationaltargetsonvariousdevelopmentaspects,suchaselectricityaccessratesandper-capitaincomegrowth.
ThepowersystemcapacityexpansionanalysisperformedusingtheSPLAT-MESSAGEframeworkidentifiedcost-optimalprospectsfornewgenerationcapacity,cross-borderinterconnectionandstorageassetsupto2040undervariousscenarios(AUDA-NEPAD,2023a,2023b).Asacapacityexpansionmodel,theSPLAT-CMPmodelmainlyassessedthecostimplicationsassociatedwiththebuildoutofthescenariocapacitieswithoutdeepdivingintotheengineeringaspectsofgridoperation.Nevertheless,certainimportantoperationalandengineeringaspectswereaccountedforinasimplifiedway,i.e.theplanningreserveconstraint(Section2.2.1),theupperboundoninstantpenetrationofvariablerenewables(Section2.2.2),andothers.
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|9
Box1AnalysesandtoolsinvolvedinthefirstCMPexercise(continued)
ThenetworkanalysisperformedusingthePSS?EtoolaimedtorefineandvalidatetheSPLAT-CMPresults.Itcarriedoutanengineeringanalysiscoveringsteady-statesystemstudiestoassesspotentialgridreliabilitygaps,suchasthevariouscriticalcontingenciesinvolvinglossofmajorgeneratorsortransmissionlinesacrossdifferentpartsofthecontinentalgridsystem(AUDA-NEPAD,2023f).Advancedstudies,suchastransientandfrequencystabilitystudies,wereoutsidethescopeoftheanalysis.
Inadditiontotheabovethreeanalyses,theCMPexercisealsodevelopedamethodologyforcost–benefit-basedrankingofthecandidategenerationandinterconnectionprojectsofkeyrelevanceinthemediumterm,being2023-2032(AUDA-NEPAD,2023g).Thisanalysiswasusedtoevaluatetheinternalrateofreturn(IRR),netpresentvalue(NPV),andotherfinancialmetrics/indicatorsoftheprojects.ThisanalysisdifferedfromtheSPLAT-CMPanalysisinthesensethatitevaluatedthepriorityoftheprojectsfromaninvestor’sperspectiveinsteadofthesystemvalueperspective.Thecost–benefitstudyaimedtoinformthenextstepsintheCMPprocess,whichwouldfocusonamulti-criteriarankingoftheprojectsfortheirfurtherintegrationintothevariousinfrastructurefacilitationmechanismsinprogressinAfrica.
Box2ToolselectionconsiderationsoftheCMPstakeholders(AUDA-NEPAD,2023c)
WhileselectingthevariousmodelstocarryouttheCMPexercise,theCMPstakeholderspaidparticularattentiontomaintaininguniformitywiththetoolsandmodelsalreadyutilisedand/orselectedforupdatingtheindividualpowerpoolmasterplans.Thedetailedcriteriaincludedthefollowingconsiderations:
i.Functionality:Isthemodelfitforpurposeforthejobtobeundertakenandcanthemodelhandleallthemajorissuesthatneedtobemodelled?
ii.Costoflicences:Isthecostofpotentiallicencesprohibitive,giventheneedfortrainingforagivennumberofpersonnelandtheneedforthemaintenanceofdatabases?
iii.Transparencyofthemodel:Isthemodellingmethodologysufficientlydocumented?Canitbeusedtounderstandtheexpectedoutcomesofthemodel?
iv.Reliabilityofthemodel:Canthemodelbeusedtoconfirm/validateknownoutcomesfrompastmodellingapproaches?Canitrunproperlywithoutnon-convergenceissues,andwouldtheresultsremaininsensitivetodifferentmodelversions?
v.User-friendlinessofthemodel:
–Candataeasilybeenteredinthemodel,includingbulkchanges,andcantheresultsbemadeavailableinanaccessibleformatthatcanbedirectlyusedinreportsorpresentations?
–Doesthemodelhavearobuststandardsetofplotsandtablestoallowtheresultstobereviewedinanaccessiblemanner?
–Doesthemodelproducereportsthatcanbeeasilycustomisedforvariousapplications?
–Doesthemodelhavea(graphical)interface?
10|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
1.THESPLAT-CMPMODELFOR
THEAFRICANCONTINENTAL
POWERSYSTEMSMASTERPLAN
TheSPLATmodelsarecountry-specificgenerationcapacityexpansionmodelscoveringtheentireAfricancontinentandareroutinelyusedbyIRENAfornationalandregionalcapacity-buildingprogrammesinAfrica
(IRENA,n.d.a),andthePlanningandProspectsforRenewablePowerinAfricaanalyses(IRENA,n.d.b).TheSPLATmodelswerecreatedutilisingamodelgeneratorcalledtheModelforEnergySupplyStrategyAlternativesandtheirGeneralEnvironmentalImpact(MESSAGE).MESSAGEisaversatile,adaptable,bottom-up,multi-yearenergysystemmodelthatutiliseslinearandmixed-integeroptimisationtechniques.ItwasfirstestablishedbytheInternationalInstituteofAppliedSystemAnalysis(IIASA),buthasbeensubsequentlyimprovedbytheInternationalAtomicEnergyAgency(IAEA).
Formodellingpowersystems,theMESSAGEsoftwareneedsaprojectionofdemand,adatabaseofcurrentcapitalassetsforpowergenerationandtransmission,technicalandeconomicspecificationsofpowersupplytechnologies,andalist(alongwithtechnicalandeconomicspecifications)offutureinvestmentoptionsforpowergenerationandtransmissionforthemodeltoinvestin.MESSAGEaimstominimisethenetpresentvalue(subjecttoauser-definedoveralldiscountrate)oftotalsystemcostsincurredtomeetauser-definedlevelofdemandoveragivenplanninghorizonandunderaspecificsetofassumptions.AMESSAGEuserguidecourtesyoftheIAEAispubliclyavailable(IAEA,2016).MESSAGEisafree-of-costtoolforIAEAmemberstatesandsupportsworkingwithfreeprogrammingsolvers.
Startingfromthepowerinfrastructureinachosenbaseyearinagivenregion,aMESSAGE-basedmodelcomputesaprogressionofpossibletechnologycombinationsperperiod(user-defined;typicallyyearly)thatcanachievethelowest-costobjectiveacrosstheplanningphasetomeetuser-defineddemandandconstraints.Theconstraintscanrepresenttechnicalconstraintslinkedtopowersystemoperation,butmayalsopolicyassumptionsthatreflectscenariostorylines.Whilethemodelcantechnicallyrunatfullhourlyresolution,itistypicallyrunusingtimeslice-basedapproachestoavoidunrealisticcomputationalrequirements(seeSection3formoredetails).Thesetimeslicesusuallyrepresent“common”dailyandseasonalvariabilitiesinpowergenerationanddemand.
Themodelproducesthelowesttotaldiscountedcost3ofthesystem,whichincludesinvestment,operationandmaintenance,fuel,andanyothercostsdefinedbytheuser(e.g.penaltiesongreenhousegasemissions;costsofunmetdemand).Additionally,itensuresthatallsystemrequirementsaremet,suchassufficientresourcesandcapacitytoachievedesiredproductionlevels,meetingauser-definedreservemargin,orstayingwithinuser-definedtechnologydeploymentlimits,aswellasanypolicyobjectivesthattheusermaydefine(e.g.renewableenergytargets,CO2emissionlimits,speedoftechnologyrollout).
3Discountingisaprocessofconvertingacostvalueprojectedtoincurinthefutureintoanequivalentcurrentvalue.IntheCMPmodel,thebaseyearof2019reflectsthe“current”,andthevariouscostsanticipatedtoincurindifferentyearsacrossthestudyperiodarebroughtto2019equivalentsassumingafixeddiscountratedescribedinSection2.3.4
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|11
TheSPLAT-CMPmodelwasdesignedinaversatileandflexiblewaytocontrolmodelinputsandoutputs,andallowconfigurationofrunswithanycombinationofAfricancountries.Theultimategoalwastorunscenariosatthecontinentallevelandexaminesuggestedinvestmentstrategiesinnewgenerationandcross-bordertransmissionprojectsundervariousscenarios.ThemodelwasestablishedbymergingpreviousversionsoftheSPLATmodelforindividualAfricanpowerpools,documentedinIRENA’sreportseriesonplanningandprospectsforrenewablepowerinAfrica:SPLAT-WfortheWestAfricanPowerPool(IRENA,2018),SPLAT-ACECfortheAfricanCleanEnergyCorridor,consistingoftheEasternandSouthernAfricanpowerpools
(IRENA,2021a),SPLAT-CfortheCentralAfricanPowerPool(IRENA,2021b),andSPLAT-NforNorthAfricaincludingCOMELECcountries(IRENA,2023b).
TheSPLAT-CMPmodelincludesanumberofupdatesascomparedtopreviousSPLATmodels,andsomestate-of-the-artmodellingfeaturesthatmaybenefittheenergymodellingcommunity.
12|ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA
2.ELEMENTSOFSPLAT-CMPMODELDESIGN
2.1POWERSYSTEMDESCRIPTION
InthespiritofpreviousSPLATmodels,theSPLAT-CMPmodelinitssimplestformcanberepresentedasfollows.Eachcountryisrepresentedasasinglenodecontainingdifferentenergy“l(fā)evels”,whichrepresentenergyattheresourcelevel(primary),energyconvertedintoelectricitybypowerplants(secondary),electricityatthetransmissionlevel(tertiary),andelectricityatthedistributionlevel(final).Theseenergylevels,alongwithvariousothermodelelements(seebelow),areschematicallyshowninFigure1.
Theprimarylevelrepresentstheavailabilityofresources(measuredintermsofprimaryenergysupply)ateachcountrynodelevel.Theavailabilityoftheseresourcesisdeterminedbothbydomesticresourcesaswellasacountry’scapacityforimports,i.e.byexogenousconstraints.Fuelpricesareexogenouslysetatthislevel.IntheSPLATmodels,asadefault,fuelpricesaredifferentiatedbyfueltypeandbylocalproductionversusimports,butnotdifferentiatedonacountrybasis(i.e.country-levelsubsidiesorotherpricedistortionsarenotreflectedinthemodel).
Thesecondarylevelisthemostimportantinthemodel,asitcontainsallthepowergenerationassetswithinacountrythatconvertaresource(primarylevel)intoelectricityreadytofeedintothetransmissiongrid(tertiarylevel).Itnotonlycontainsexistingpowergenerationassets,butalsocommittedassets(specificplantsthatarenotonlineyet,butwhichareconsideredascomingonlineinthefuturewithcompletecertaintyinaknownyear;thedefinitionofcommittedaccordingtotheCMPplanningprocessisaplantthathasreachedfinancialclose)aswellasallcandidatetechnologies,amongwhichthemodelcanchooseaselectiontocoverthefuturesupply–demandgap.Inadditiontouser-definedcandidatecapacity,SPLAT-CMPmodelentailspre-loadedgenericcandidatesupplyoptionsformostgenerationtechnologiestoallowtheusertodesigntheexpansionoptimisationaccordingtospecificscenariodefinitions.
Foralltechnologiesthatareduetocomeonlineinthefuture,aconstructiontime(numberofyears)isassumed,andtheoptimisationthusaccountsfortheconstructionstartingbeforetheyearofdeployment.Theinterestexpenseduringconstructioniscomputedbythemodelassumingthattheovernightcapitalexpenseisdistributedequallyduringtheconstructionperiod(includingtheyearinwhichthetechnologycomesonline).Theinterestexpensetogetherwiththeovernightcapitalexpenseofthetechnologyiseventuallyannualisedandtheresultingannualisedcostsincurringeachyearduringtheprojectlifeperiodarebroughttoacommonbaseyearbydiscounting(seeSection2.3.4formoredetailsondiscountrateparameter)forthepurposeofmakingoptimizationdecisions.Theconstructiontimesdifferbytechnology,representingthecomplexityoftheengineeringinvolvedindifferenttypesofpowerplants.Wenotethatonlyengineeringconstructiontimeswereconsidered,whereasinreality,planningandregulatoryapprovalstendtotake(substantially)moretime,especiallyfornuclearpowerplantsandlargehydropowerplants.
ADVANCEMENTSINCONTINENTALPOWERSYSTEMPLANNINGFORAFRICA|13
Figure1SchematicoverviewoftheRES(ReferenceEnergySystem)ofeachcountrynodein
theSPLAT-CMPmodel
Secondary
User-de?nedexisting,committedandcandidatesandpre-loadedgenericcandidates
Gas-?redplantsOCGT/CCGT**
Coal-?redplants**
HFO-?redplants*
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《唯美模板》課件
- 《禮儀插花的應(yīng)用》課件
- 單位管理制度集粹匯編人員管理十篇
- 《離合器檢修》課件
- 單位管理制度匯編大合集人事管理十篇
- 單位管理制度分享匯編【人力資源管理】十篇
- 單位管理制度分享大全職員管理篇
- 單位管理制度范例選集職員管理篇十篇
- 《中級(jí)計(jì)量經(jīng)濟(jì)學(xué)》課程教學(xué)大綱 (二)
- 八下期中測(cè)試卷02【測(cè)試范圍:第1-11課】(原卷版)
- 公司安全事故隱患內(nèi)部舉報(bào)、報(bào)告獎(jiǎng)勵(lì)制度
- 《中國(guó)石化石油庫(kù)和罐區(qū)安全管理規(guī)定(2022年)757》
- 幼兒園課件:《獨(dú)自外出真危險(xiǎn)》
- 倉(cāng)儲(chǔ)類企業(yè)企業(yè)風(fēng)險(xiǎn)分級(jí)管控和隱患排查治理雙體系(2022-2023手冊(cè))
- 應(yīng)聘人員面試登記表
- 中職學(xué)校優(yōu)秀班主任事跡材料(完整版)
- 草莓采摘機(jī)械手的設(shè)計(jì)與實(shí)現(xiàn)
- 最全的官能團(tuán)化合物的紅外吸收峰特征
- 世界氣候類型(圖很清晰)
- 新版【處置卡匯編】重點(diǎn)崗位人員應(yīng)急處置卡(全套25頁(yè))
- EE系列磁芯參數(shù)
評(píng)論
0/150
提交評(píng)論