新疆沙雅縣2024年中考一模數學試題含解析_第1頁
新疆沙雅縣2024年中考一模數學試題含解析_第2頁
新疆沙雅縣2024年中考一模數學試題含解析_第3頁
新疆沙雅縣2024年中考一模數學試題含解析_第4頁
新疆沙雅縣2024年中考一模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆沙雅縣2024年中考一模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內角平分線 B.三邊垂直平分線C.三條中線 D.三條高2.下面的統(tǒng)計圖反映了我國最近十年間核電發(fā)電量的增長情況,根據統(tǒng)計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發(fā)電量占總發(fā)電量的比值約為1.5%B.2006年我國的總發(fā)電量約為25000億千瓦時C.2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍D.我國的核電發(fā)電量從2008年開始突破1000億千瓦時3.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.54.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設CD=y,BP=x,則y與x函數關系的大致圖象是()A. B. C. D.5.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.6.已知A樣本的數據如下:72,73,76,76,77,78,78,78,B樣本的數據恰好是A樣本數據每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數 B.標準差 C.中位數 D.眾數7.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數據的平均數和眾數分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°8.二次函數(a、b、c是常數,且a≠0)的圖象如圖所示,下列結論錯誤的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b9.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm10.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.12.拋物線y=(x+1)2-2的頂點坐標是______.13.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.14.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數量關系是________.15.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.16.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.18.(8分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.19.(8分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數軸上.20.(8分)計算:÷–+2018021.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.22.(10分)在中,,是的角平分線,交于點.(1)求的長;(2)求的長.23.(12分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.24.在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:根據線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質,熟記性質是解題的關鍵.2、B【解析】

由折線統(tǒng)計圖和條形統(tǒng)計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發(fā)電量占總發(fā)電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發(fā)電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發(fā)電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.【點睛】本題考查的是條形統(tǒng)計圖和折線統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;折線統(tǒng)計圖表示的是事物的變化情況.3、C【解析】

連接AE,根據翻折變換的性質和正方形的性質可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質、全等三角形的判定與性質是本題的解題關鍵.4、C【解析】

根據等邊三角形的性質可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據相似三角形的性質即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數圖象、相似三角形的判定與性質,利用相似三角形的性質找出y=-x2+x是解題的關鍵.5、B【解析】試題分析:結合三個視圖發(fā)現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.6、B【解析】試題分析:根據樣本A,B中數據之間的關系,結合眾數,平均數,中位數和標準差的定義即可得到結論:設樣本A中的數據為xi,則樣本B中的數據為yi=xi+2,則樣本數據B中的眾數和平均數以及中位數和A中的眾數,平均數,中位數相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.7、D【解析】試題分析:數據28°,27°,30°,33°,30°,30°,32°的平均數是(28+27+30+33+30+30+32)÷7=30,30出現了3次,出現的次數最多,則眾數是30;故選D.考點:眾數;算術平均數.8、D【解析】

根據二次函數的圖象與性質逐一判斷即可求出答案.【詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當x=1時,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當x=﹣1時,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點:本題主要考查圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程、不等式之間的轉換,根的判別式的熟練運用.9、B【解析】試題解析:∵菱形ABCD的對角線根據勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.10、D【解析】

解決本題抓住旋轉的三要素:旋轉中心O,旋轉方向順時針,旋轉角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,從而得A′點坐標為(1,3).故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F,D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F,D,可根據ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數,解題的關鍵是合理添加輔助線構造全等三角形;12、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.13、10或1【解析】

分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時

水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點睛】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.14、a+b=1.【解析】試題分析:根據作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數,故a+b=1.考點:1角平分線;2平面直角坐標系.15、【解析】

連接,根據勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.16、17℃.【解析】

根據返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數和負數的意義.±4℃指的是比21℃高于4℃或低于4℃.三、解答題(共8題,共72分)17、(1)見解析(2)【解析】試題分析:(1)直接利用平移的性質得出對應點位置進而得出答案;(2)利用位似圖形的性質得出對應點位置,再利用銳角三角三角函數關系得出答案.試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求,由圖形可知,∠A2C2B2=∠ACB,過點A作AD⊥BC交BC的延長線于點D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考點:作圖﹣位似變換;作圖﹣平移變換;解直角三角形.18、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標即可;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標即可.【詳解】(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是(2,-2);(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是(1,0),故答案為(1)(2,-2);(2)(1,0)【點睛】此題考查了作圖-位似變換與平移變換,熟練掌握位似變換與平移變換的性質是解本題的關鍵.19、(1)x=;(2)x>3;數軸見解析;【解析】

(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數軸上表示為:.【點睛】本題考查了解分式方程和解一元一次不等式組、在數軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據不等式的解集得出不等式組的解集是解(2)的關鍵.20、2【解析】

根據實數的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2【點睛】此題重點考察學生對實數的混合運算的應用,熟練掌握計算方法是解題的關鍵.21、見解析【解析】

根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.22、(1)10;(2)的長為【解析】

(1)利用勾股定理求解;(2)過點作于,利用角平分線的性質得到CD=DE,然后根據HL定理證明,設,根據勾股定理列方程求解.【詳解】解:(1)在中,;(2)過點作于,平分,在和中,.設,則在中,解得即的長為【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,勾股定理,全等三角形的判定與性質,難點在于(2)多次利用勾股定理.23、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】

(1)由矩形性質知BC=AD=5,根據BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當點P在線段AB上運動時,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論