版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
11(2)函數(shù)f(x)中存在x1,x2且x1≠x2,滿足f(x1)=f(x2),求證:x1+x2>2x0(x0為函數(shù)f(x)x,-f'(x0)>0;x-f'(x0)>0.F(x)=f(x)-f(2x,-x).(2024·江蘇揚州·模擬預(yù)測)已知函數(shù)f(x(=ln(mx(-x(m>0(.(1)若f(x(≤0恒成立,求m的取值范圍;(2)若f(x(有兩個不同的零點x1,x2,證明x1+x2>2.22已知f(x(=(x-1(ex+ax2.(1)討論函數(shù)f(x(的單調(diào)性;題目3(2024·全國·模擬預(yù)測)已知函數(shù)f(x)=>0),且f(x)有兩個相異零點x1,x2.x2>33 題目4(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=-x2+2lnx,g(x(=a(x2+2x(.(1)若曲線f(x(在點(1,-1(處的切線與曲線g(x(有且只有一個公共點,求實數(shù)a的值.(2)若方程g(x(-f(x(=1有兩個不相等的實數(shù)根x1,x2, (1)討論f(x)的單調(diào)性;2-x1<44 題目2(2024·湖南株洲·一模)已知函數(shù)f(x(=(x+a(ebx在(1,f(1((處的切線方程為y=e(x-1(,其中e為自2是方程f(x(=kx2-2(k>2)的兩個不相等的正實根,證明:|x1-x2|>ln(2024·北京朝陽·二模)已知函數(shù)f(x(=ax-ln(1-x((a∈R(.(1)求曲線y=f(x(在點(0,f(0((處的切線方程;(3)若f(x(有兩個不同的零點x1,x2,且|x2-x1|>e-1,求a的取值范圍.55(2024·河南·模擬預(yù)測)已知b>0,函數(shù)f(x(=(x+a(ln(x+b(的圖象在點(1,f(1((處的切線方程為xln2-y-ln2=0.(2)若方程f(x(=為自然對數(shù)的底數(shù))有兩個實數(shù)根x1,x2,且x1<x2,證明:x2-x1<1+(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=ax2-(lnx(2(a∈R(.(2)若f(x(有兩個極值點x1,x2.66②當x1>4x21x>16e3. 若f(x1(=f(x2(,證明:x1?x277 題目4(2024·安徽合肥·模擬預(yù)測)已知函數(shù)f(x)=a(1-2(1)討論f(x)的單調(diào)性;2(x1≠x2(為函數(shù)=kx2+-lnx的兩個零點,求證:(x1x2(4>12e4. 1(2023·全國·模擬預(yù)測)已知函數(shù)f(x(=(1)設(shè)函數(shù)g(x(=ekx-(k>0(,若f(x(≤g(x(恒成立,求k的最小值;88 題目2(23-24高二下·河南平頂山·階段練習(xí))已知函數(shù)f(x(=x2lnx-a(a∈R(. 3(2023·湖北武漢·三模)已知函數(shù)f(x(=ax+(a-1(lnx+,a∈R.(1)討論函數(shù)f(x(的單調(diào)性;(2)若關(guān)于x的方程f(x(=xex-lnx+有兩個不相等的實數(shù)根x1、x2,99已知f(x(=x2- (1)討論f(x(的單調(diào)性;(2)若方程f(x(=1有兩個不同的根x1,x2. 2(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=(1)求函數(shù)f(x(在[1,3[上的值域;(2024·四川涼山·二模)已知函數(shù)f(x(=x+asinx.(1)若函數(shù)f(x(在R上是增函數(shù),求a的取值范圍;設(shè)g(x(=x-sinx-lnx,若g(x1(=g(x2((x1≠x2(,證明: 題目4(2024·黑龍江哈爾濱·模擬預(yù)測)已知函數(shù)f(x(=x2lnx-m有兩個不同的零點x1,x2,且t=x+x.(2024·四川·一模)已知函數(shù)f(x(=ax2+x-lnx-a.(2)若f(x(有2個零點x1,x2,證明:a(x1+x2(2+(x1+x2(>2. 2(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=x2(alnx-有兩個極值點x1,x2,且x1<x2.(2)證明:x1lnx1+x2lnx2>x1+x2. 題目3(2024·貴州·模擬預(yù)測)已知函數(shù)f(x)=xex+1.(1)求函數(shù)f(x(的單調(diào)區(qū)間; (2)若f(x(存在兩個極值點x1,x2(x2>x1>0(.2-x1+2> 題目1(23-24高三下·四川成都·期末)已知函數(shù)f(x(=ex-ax2.(2)設(shè)函數(shù)g(x(=f(x(-sinx,當a=時,若g(x1(+g(x2(= 的極值點,則(α,φ(α((為曲線y=φ(x(的拐點.已知函數(shù)f(x(=aex-xlnx有兩個極值點x1,x2,且Q(x0,f(x0((為曲線C:y=f(x(的拐點.(2024·全國·模擬預(yù)測)已知函數(shù)f(x)=2lnx+x2+x.(1)求曲線y=f(x)在點(1,f(1))處的切線方程.(2)若正實數(shù)x1,x2滿足f(x1)+f(x2)=4,求證:x1+x2≥2. 題目4(23-24高二下·貴州貴陽·階段練習(xí))設(shè)f/(x(是函數(shù)f(x(的導(dǎo)函數(shù),若f/(x(可導(dǎo),則稱函數(shù)f/(x(的導(dǎo)函數(shù)為f(x(的二階導(dǎo)函數(shù),記為f″(x(.若f″(x(有變號零點x=x0,則稱點(x0,f(x0((為曲線y=f(x(的數(shù)y=f(x(的圖象的對稱中心.已知函數(shù)f(x(=x3+bx2-24x+d的圖象的對稱中心為(1,3(,求函數(shù)f(x((2)已知函數(shù)g(x(=emx-1+mx3-x2+若g(x1(+g(x2(=-2(x1≠x2(,求證:x1+x2< A.a>1B.x1+x2<C.x1?x2<1D.x2-x1>-1 2(2024·全國·模擬預(yù)測)若函數(shù)f(x(=alnx+x2-2x有兩個不同的極值點x1,x2,且t-f(x1(+x2<f(x2(-x1恒成立,則實數(shù)t的取值范圍為()A.(-∞,-5(B.(-∞,-5[C.(-∞,2-2ln2(D.(-∞,2-2ln2[ 4(2024·遼寧·三模)已知函數(shù)f(x)=lnx+x2-ax存在兩個極值點,若對任意滿足f(x1)=f(x2)=(x1<x2<x3),均有f(ex)<f(ex)<f(ex),則實數(shù)a的取值范圍為() lnx-+2|-m(0<m<3)有兩個不同的零點x1,x2(x1<x2①<e2m②x1>③e<x2<-④x1x2>1A.1B.2C.3D.4 f(x(=ex-mx2有兩個極值點x1,x2(0<x1<x2),函數(shù)g(x(=xlnx-x2-x有兩個極值點x3,x4(0<x3<x4),設(shè)M=+,則()A.0<M<B.0<M<C.M>D.M>e 7(2023·四川成都·一模)已知函數(shù)f(x(=(lnx(2-xlnx+x2有三個零點x1、x2、x3且x1<x2<x3,則++的取值范圍是()A.B. lnx-+2|-m(0<m<3)有兩個不同的零點x1,x2(x1<x2①<e2m②x1>③x1x2>1A.0B.1C.2D.3 A.f(x(≤B.a的取值范圍是D.x1+x2>2 題目10(2024·山西太原·三模)已知x1是函數(shù)f(x(=x3+mx+n(m<0(的極值點,若f(x2(=f(x1((x1≠x2(,則下列結(jié)論正確的是()A.f(x(的對稱中心為(0,n(B.f(-x1(>f(x1(C.2x1+x2=0D.x1+x2>0 題目11(23-24高二上·湖北武漢·期中)已知函數(shù)f(x)=xlnx-x與y=a有兩個不同的交點,交點坐標分別為(x1,y1(,(x2,y2((x1<x2(,下列說法正確的有()A.f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增B.a的取值范圍為(-1,0]C.x2-x1>ae+eD.x2-x1<2a+e+ 題目15(2024·陜西安康·模擬預(yù)測)已知函數(shù)f(x(=x2e-x-a(x2-4x(在定義域(0,+∞(上僅有1個極大值(2)若f(x1(=f(x2(,1<x1<2<x2,證明:x1+x2>4. (2)若x1,x2是f(x)的兩個相異零點,求證:|x2-x1|<1-(3)當a>0時,若滿足f(x1(=f(x2((x1<x2(,求證:x1+x2<2lna.(2024·安徽合肥·模擬預(yù)測)已知函數(shù)f(x)=a(1-2lnx)+4x6(a∈R).(1)討論f(x)的單調(diào)性;2(x1≠x2(為函數(shù)=kx2+-lnx的兩個零點,求證:(x1x2(4>12e4. (1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若x1<x2,滿足f(x1(=f(x2(=0.11(2)函數(shù)f(x)中存在x1,x2且x1≠x2,滿足f(x1)=f(x2),求證:x1+x2>2x0(x0為函數(shù)f(x)x,-f'(x0)>0;x-f'(x0)>0.F(x)=f(x)-f(2x,-x). 題目1(2024·江蘇揚州·模擬預(yù)測)已知函數(shù)f(x(=ln(mx(-x(m>0(.(1)若f(x(≤0恒成立,求m的取值范圍;(2)若f(x(有兩個不同的零點x1,x2,證明x1+x2>2.(2)構(gòu)造p(t(=f(1+t(-f(1-t(并證明t>0時f(1+t(>f(1-t(【解答過程】(1)首先由m>0可知f(x(的定義域是(0,+∞(,從而f(x(=ln(mx(-x=lnx-x+lnm.故f(x(=ln(mx(-x=-1=,從而當0<x<1時f(x(>0,當x>1時f(x(<0.故f(x(在(0,1(上遞增,在(1,+∞(上遞減,所以f(x(具有最大值f(1(=lnm-1.所以m的取值范圍是(0,e[.(2)不妨設(shè)x1<x2,由于f(x(在(0,1(上遞增,在(1,+∞(上遞減,故一定有0<x1<1<x2.22在-1<t<1的范圍內(nèi)定義函數(shù)p(t(=f(1+t(-f(1-t(.則p/(t(=f/(1+t(+f/(1-t(=+-=->0,所以p(t(單調(diào)遞增.這表明t>0時p(t(>p(0(=f(1(-f(1(=0,即f(1+t(>f(1-t(.又因為f(2-x1(=f(1+(1-x1((>f(1-(1-x1((=f(x1(=0=f(x2(,且2-x1和x2都大于1,故由f(x(在(1,+∞(上的單調(diào)性知2-x1<x2,即x1+x2>2. 2(2024·遼寧·三模)已知f(x(=(x-1(ex+ax2.(1)討論函數(shù)f(x(的單調(diào)性;(2)先用零點存在性定理證明結(jié)論,再構(gòu)造新函數(shù)討論f(x1)與f(-x2)大小關(guān)系,利用f(x(在(0,+∞)上單調(diào)所以f(x(在(0,+∞)上單調(diào)遞增,在(-∞,0)上單調(diào)遞減;當ln(-a(<0,即-1<a<0時,由f/(x(>0得x∈(-∞,ln(-a((∪(0,+∞(,f/(x(<0得x∈(ln(-a(,0(,所以f(x(在(-∞,ln(-a((和(0,+∞(上單調(diào)遞增,在(ln(-a(,0(上單調(diào)遞減;當ln(-a(=0,即a=-1時,f/(x(≥0恒成立,f(x(在R上單調(diào)遞增;當ln(-a(>0,即a<-1時,由f/(x(>0得x∈(-∞,0(∪(ln(-a(,+∞(,由f/(x(<0得x∈(0,ln(-a((,所以f(x(在(-∞,0(和(ln(-a(,+∞(上單調(diào)遞增,在(0,ln(-a((上單調(diào)遞減.綜上,當a≥0時,f(x(在(0,+∞(上單調(diào)遞增,在(-∞,0(上單調(diào)遞減;當-1<a<0時,f(x(在(-∞,ln(-a((和(0,+∞)上單調(diào)遞增,在(ln(-a(,0(上單調(diào)遞減;當a=-1時,f(x(在R上單調(diào)遞增;當a<-1時,f(x(在(-∞,0)和(ln(-a(,+∞(上單調(diào)遞增,在(0,ln(-a((上單調(diào)遞減.(2)由第(1)問中a>0時,f(x(在(0,+∞(上單調(diào)遞增,在(-∞,0(上單調(diào)遞減,使得f(x2(=0;則f(x(=(x-1(ex+ax2>(x-1)+ax2=ax2+x-1,33其中>0,<0,a取b=-1-、1+2a<0,af(b(=(b-1(eb+ab2>ab2+b-1=0,即f(b(>0,且f(0(=-1<0,使得f(x1(=0;所以當a>0時,函數(shù)f(x(有且僅有兩個零點;所以ax=(1-x2)ex2,所以f(-x2)=(-x2-1)e-x2++ax=(-x2-1)e-x2+(1-x2)ex2,令g(x(=(-x-1(e-x+(1-x(ex,g(x(=x(e-x-ex(,所以(-x2-1)e-x+(1-x2)ex<0,所以f(-x2)<0,所以f(x1)=0>f(-x2),所以x1<-x2,所以x1+x2<0.+x2>.則f(x)min=f(1)=e-a.f(x2)=0,44于是g(a)>0,函數(shù)g(a)=ea-a2在(e,+∞(上單調(diào)遞增,g(a)>g(e)=ee-e2>0,(令函數(shù)h(x)=xlnx-lna.x+1,求導(dǎo)得h(x)=lnx+1-lna在(0,+∞(上單調(diào)遞增,且h=0,不妨設(shè)x1<x2要證x1+x2>2>-x1>,即證h(x2)>h-x1(.又h(x1(=h(x2(,則即證h(x1)>h-x1(,令函數(shù)F(x)=h(x)-h-x(,x∈(0,,則F(x)=h(x)+h-x(=lnx+1-lna+ln-x(+1-lna=lnx-x2(+ln,而x-x2=-(x-2+<,則F(x)<ln+ln=0,因此函數(shù)F(x)在(0,上單調(diào)遞減,即F(x)>F=0,則h(x1)>h-x1(,所以x1+x2>. 題目4(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=-x2+2lnx,g(x(=a(x2+2x(.(1)若曲線f(x(在點(1,-1(處的切線與曲線g(x(有且只有一個公共點,求實數(shù)a的值.(2)若方程g(x(-f(x(=1有兩個不相等的實數(shù)根x1,x2,(2)①構(gòu)造函數(shù),令h(x(=2lnx-(a+1(x2-2ax+1,則h(x(有兩個零點x1,x2,進行求解即可;②由①得-1<a<0,則>2,分析得出:需【解答過程】(1)函數(shù)f(x(的定義域為(0,+∞(,f(x(=-2x+,f(1(=-1,f(1(=0,所以曲線f(x(在點(1,-1(處的切線方程為y=-1.因為切線y=-1與曲線g(x(=a(x2+2x(有且只有一個公共點,所以g(-1(=-a=-1,故a=1.(2)①方程g(x(-f(x(=1有兩個不相等的實數(shù)根x1,x2,即方程2lnx-(a+1(x2-2ax+1=0有兩個不相等55令h(x(=2lnx-(a+1(x2-2ax+1,則h(x(有兩個零點x1,x2.hI(x(=-2(a+1(x-2a=-,因為x>0,x+1>0,所以hI(x(的正負取決于(a+1(x-1的正負.因為函數(shù)h(x(有兩個零點,所以h>0,即2ln-(a+12-2a?+1>0,化簡得2ln(a+1(+<0.令m(x(=2ln(x+1(+,x>-1,則mI(x(=+>0,則函數(shù)m(x(在(-1,+∞(上單調(diào)遞又m(0(=0,則不等式2ln(a+1(+<0的解集為{a|-1<a<0{.因為h(x(=2lnx-(a+1(x2-2ax+1<2lnx-2ax+1,所以h(e-2(<2lne-2-+1=-3-<0.設(shè)φ(x(=lnx-x+1,x>0,則φI(x(=-1=,即h(x(=2lnx-(a+1(x2-2ax+1<2(x-+1(x2-2ax+1=x[2(1-a(-(a+1(x[,取x0>>,則h(x0(<x0[2(1-a(-(a+1(x0[<0.所以h(x(共有兩個零點.②由①得-1<a<0,則>2,不妨設(shè)0<x1<<x2,要證明x1+x2>2,只需證明x1+x2>,即證明x1>-x2.66所以只需證明h(x1(>h-x2(.又h(x1(=h(x2(,所以需證h(x2(-h-x2(>0.記F(x(=h(x(-h-x(,x∈,+∞(,則F(x(=h(x(+h-x(=+-4(a+1(=-4(a+1(>-4(a+1(=0,則F(x(>0,所以F(x2(>0,即h(x2(-h-x2(>0,所以x1+x2>,故x1+x2>2. (1)討論f(x)的單調(diào)性;(2)設(shè)g(x)=-f(x)+x2-(a+1)x-2a+(a-1)lnx,若g(x)存在兩個不同的零點x1,x2,且x1<x2.(ii)證明:x2-x1<-.【解答過程】(1)由題f(x)的定義域為(0,+∞),f(x)=2x-(2+a)+== (2x-a)(x-1)77當0<x<1或x>時,f(x)>0;當1<x<時,f(x)<0,(2)(i)由題意知g(x)=-lnx+x-2a,所以g(x)=-+1==,則g(x)min=g(1)=e+1-2a,(ii)下面找出兩個點m,n(0<m<1<n),使得g(m)>0,g(n)>0,①g(2a)>0?-ln(2a)>0,設(shè)m(x)=-lnx(x>2)x-x2-x(x>0),則h(x)=ex-x-1,故h″(x)=ex-1>0,故h(x)>h(2)=e2-4>0,即ex>x2+x(x>2),因此m(x)=-lnx>x+1-lnx,設(shè)u(x)=x+1-lnx(x>2),則u(x)=-=>0,因此m(x)=-lnx>0,又2a>e又f(1)<0,所以1<x2<2a.所以m(x)在(2,+∞)上單調(diào)遞增,88②g=(2a-1-ln+-2a,設(shè)t(x)=lnx-x+1,則t(x)=,所以t(x)≤t(1)=0,即lnx≤x-1,因此g≥(2a-12a-1)=(2a-1-1(>0,,即-1<-x1<-,于是x2-x1<2a-=-. 題目2(2024·湖南株洲·一模)已知函數(shù)f(x(=(x+a(ebx在(1,f(1((處的切線方程為y=e(x-1(,其中e為自2是方程f(x(=kx2-2(k>2)的兩個不相等的正實根,證明:|x1-x2|>ln.得f(x(的最小值;【解答過程】(1)f(x(=ebx+b(x+a(ebx=(bx+ab+1(ebx,由題意有f(1(=(b+ab+1(eb=e及f(1(=(1+a(eb=e(1-1(=0,故a=-1、b=1,則f(x(=(x-1(ex,f(x(=(x-1+1(ex=xex,f(x(<0,故f(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增,故f(x(有最小值f(0(=(0-1(e0=-1;(2)令g(x(=f(x(-kx2+2=(x-1(ex-kx2+2,x>0,k>2,則g(x(=xex-2kx=x(ex-2k(,99故g(x(在(0,ln2k(上單調(diào)遞減,在(ln2k,+∞(上單調(diào)遞增,故g(ln2k(=(ln2k-1(eln2k-k(ln2k(2+2=2k(ln2k-1(-k(ln2k(2+2=-k[(ln2k(2-2ln2k+2[+2=-k[(ln2k-1(2+1[+2,(ln2k(=-k[(ln2k-1(2+1[+2<-k+2<0,故g(x(有兩個零點,不妨設(shè)兩零點x1<x2又g(1(=(1-1(e1-k+2=-k+2<0,由1<2ln2<2lnk,故g(ln2k(<g(則x1<1<2ln2<x2-x2|>2ln2-1=ln. 題目3(2024·北京朝陽·二模)已知函數(shù)f(x(=ax-ln(1-x((a∈R(.(1)求曲線y=f(x(在點(0,f(0((處的切線方程;(3)若f(x(有兩個不同的零點x1,x2,且|x2-x1|>e-1,求a的取值范圍.單調(diào)性可得f(x)min=a+1+ln(-a(≥0,設(shè)φ(x(=x+1+ln(-x((x<0),利用導(dǎo)數(shù)研究函數(shù)φ(x(的性質(zhì)即【解答過程】(1)由f(x)=ax-ln(1-x),得f/(x(=a+-(x<1),因為f(0)=0,f/(0)=a+1,所以曲線y=f(x)在點(0,f(0))處的切線方程為y=(a+1)x;①當a≥0時,f(-1)=-a-ln2<0,不符合題意.f/(x)<0,f(x)在區(qū)間上單調(diào)遞減,/(x)>0所以當x=1+時,f(x)取得最小值f(1+=a+1+ln(-a(;若f(x(≥0恒成立,則a+1+ln(-a(≥0,設(shè)φ(x(=x+1+ln(-x((x<0),則φ/(x(=1+=,所以φ(x(≤φ(-1(=0,即a+1+ln(-a(≥0的解為a=-1.所以a=-1;若x2<02<1-e, >0,函數(shù)f(x(=(x+a(ln(x+b(的圖象在點(1,f(1((處的切線方程為xln2-y-ln2=0.(2)若方程f(x(=(e為自然對數(shù)的底數(shù))有(2)由題意得x1<0<x0<1<x2,構(gòu)造函數(shù)證明不等式(x-1(ln(x+1(≥(x-1(?ln2,當且僅當x=1時,等號成立;(x-1(ln(x+1(≥-x,當且僅當x=0時,等號成立;從而可分別得到x=1+>x2,x=-<【解答過程】(1)因為fI(x(=+ln(x+b(,所以fI(1(=+ln(1+b(=ln2,聯(lián)立方程組+ln(1+b(=ln2,解得a=-1,b=1.由題意知f(1(=0,所以f(1(=(1+聯(lián)立方程組+ln(1+b(=ln2,解得a=-1,b=1.(2)由(1)可知f(x(=(x-1(ln(x+1(,x>-1,f(0(=0,f(1(=0,fI(x(=1-+ln(x+1(,設(shè)fI(x(=u(x(,uI(x(=+>0,所以u(x(即fI(x(在(-1,+∞(上單調(diào)遞增.00設(shè)h(x(=(x-1(?ln2,令F(x(=f(x(-h(x(=(x-1(ln(x+1(-(x-1(?ln2,則F/(x(=+ln(x+1(-ln2=ln(x+1(-+1-ln2,因為f/(x(在(-1,+∞(上單調(diào)遞增,所以F/(x(在(-1,+∞(上單調(diào)遞增.所以F(x(在(-1,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增.故F(x(≥F(1(=0,即(x-1(ln(x+1(≥(x-1(?ln2,當且僅當x=1時,等號成立.因為方程f(x(=有兩個實數(shù)根x1,也就是f(x2(=f(x1(=>f(1(=f(0(=0,且注意到f(x(在(1,+∞(上單調(diào)遞增,所以x1<0<x0<1<x2,所以(x2-1(ln(x2+1(>(x2-1(ln2,即f(x2(>h(x2(.又h(x(在(-1,+∞(上單調(diào)遞增,所以h(x(=f(x2(>h(x2(,故x>x2①.易知f(x(的圖象在坐標原點處的切線方程為g(x(=-x,令T(x(=f(x(-g(x(=(x-1(ln(x+1(+x,則T/(x(=+ln(x+1(=2-+ln(x+1(,因為f/(x(在(-1,+∞(上單調(diào)遞增,所以T/(x(在(-1,+∞(上單調(diào)遞增.所以當-1<x<0時,T/(x(<0,當x>0時,T/(x(>0,所以T(x(在(-1,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增.所以T(x(≥T(0(=0,(x-1(ln(x+1(≥-x,當且僅當x=0時,等號成立.因為x1<0-1(ln(x1+1(>-x1,即f(x1(>g(x1(.設(shè)g(x(=的根為x,則x=-,又g(x(在(-1,+∞(上單調(diào)遞減,所以g(x(=f(x1(>g(x1(,所以x<x1,從而-x>-x1②.2-x1<x-x=1++. 題目1(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=ax2-(lnx(2(a∈R(.(2)若f(x(有兩個極值點x1,x2.lnx-1,求得h(x(為(0,+∞(上的增函數(shù),且h(1(=0,進而求得f(x(單調(diào)區(qū)間;t(m>1(,令s(m(=lnm-(m>1(,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.設(shè)g(x(=2x-,則g(x(=,令h(x(=x2+lnx-1,可得h(x(=2x+>0恒成立,所以h(x(為(0,+∞(上的增函數(shù),且h(1(=0,所以g(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,所以g(x)min=g(1(=2,所以f(x)min=2>0,所以f(x(>0,所以f(x(在(0,+∞(上單調(diào)遞增.(2)解:①因為函數(shù)f(x(=ax2-(lnx(2,可得f(x(=2ax-,設(shè)p(x(=,可得p(x(=,x>0,因為f(x(有兩個極值點x1,x2,則直線y=a與函數(shù)p(x(=的圖象有兩個不同的交點,所以p(x(在(0,e(上單調(diào)遞增,在(e,+∞(上單調(diào)遞減,所以p(x)max=p(e(=.②由函數(shù)f/(x(有兩個零點x1,x2,所以2ax=lnx,2ax=lnx,只需證明t1t2>e2,不妨令t1>t2,由2at1=lnt1,2at2=lnt2得2a=要證t1t2>e2,只需證明lnt1+lnt2>2,即證lnt1+lnt2=2a(t1+t2(=(t1+t2(?>2,即證lnt1-lnt2>,即證ln,令,則m>1,只需證明lnm>(m>1(,所以s(m(在(1,+∞(上單調(diào)遞增,所以s(m(>ln1-=0, ②當x1>4x21x>16e3.(x)=lnx-2ax-1,切線方程為y-(x0lnx0-ax-2x0)=(lnx0-2ax0-1)(x-x0)則-x0lnx0+ax+2x0=(lnx0-2ax0-1)(1-x0),即有ax-2ax0-x0+lnx0-1=0,由過點(1,0)可作曲線y=f(x)兩條切線,得方程ax-2ax0-x0+lnx0-1=0有兩個不相等的實數(shù)根,令g(x)=ax2-2ax-x+lnx-1,則函數(shù)g(x)有2個零點,求導(dǎo)得gl(x)=2ax-2a-1+==, 又g=2-2a?-+ln-1=-ln2a--2<0,③若0<a<,由gl(x)>0,得0<x<1或x>,由gl(x)<0,得1<x<,當0<x<1時,g(x)=a(x-1)2-x-a-1+lnx<-a-1+lnx,當x>1時,令y=lnx-x,求導(dǎo)得yl=-1<0,函數(shù)y=lnx-x在(1,+∞)上單調(diào)遞減,則lnx-x<-1,g(x)=a(x-1)2-a-1+lnx-x<a(x-1)2-a-2,所以過點(1,0(可作曲線y=f(x(兩條切線時,a的取值范圍是(-∞,-2(.fl(x)=lnx-2ax-1,2max=,要證明x1x>16e3,只需證明lnx1+2lnx2>4ln2+3,令t=(x1>4x2),則t>4,欲證明lnx1+2lnx2>4ln2+3,令h(t)=lnt-4ln2?(t>4),求導(dǎo)得hI(t(=-4ln2?==,則φ(t)=t+4+-12ln2在t>4時單調(diào)遞增,故φ(t)>φ(4)=9-12ln2>0,所以x1x>16e3. (2)若f(x1(=f(x2(2<.(2)由f(x1(=f(x2(,可得lnx1+lnx2=?(lnx1-lnx2(,由x1?x2<?lnx1+lnx2<-2,然后換元變所以fI(1(=0+1+a=1,∴a=0,則f(x(=xlnx,定義域為(0,+f(x(=lnx+1,令f(x(=lnx+1=0,解得x=,令f(x(>0,解得x>,令f(x(<0,解得0<x<,∴f(x(在x=時取得極小值f=ln=-,無極大值.(2)由已知,令f(x1(=f(x2(=m,則x1lnx1=m,即lnx1=,x2lnx2=m,即lnx2=,兩式相減可得,lnx1+lnx2=m,兩式相加可得,lnx1-lnx2=m,+lnx2=?(lnx1-lnx2(,2<?lnx1+lnx2<-2,因此只需證明?(lnx1-lnx2(<-2即可,x1而?(lnx1-lnx2(<-2?-?ln<-2,x1不妨設(shè)x1<x2,t=,則由0<x1<x2可知0<t<1,-?ln<-2??lnt<-2?(t+1(lnt-2t+2<0,令g(t(=(t+1(lnt-2t+2,0<t<1,g(t(=lnt+-1,令h(t(=lnt+-1,則h(t(=-=<0,t(在(0,1(上遞增,g(t(<g(1(=0,即(t+1(lnt-2t+2<0, 2(為函數(shù)g(x)=kx2+-lnx的兩個零點,求證:(x1x2(4>12e4.lnx1lnx2當f(x)>0時,x>6,當f(x)<0時,6,+∞6,+∞(2)設(shè)0<x1<x2,則g(x1(=kx+-lnx1=0,g(x2(=kx+-lnx2=0,所以k=-=-,lnx1lnx2lnx1lnx211x-xx-x1xlnx1lnx211x-xx-x1xxxx(x1x2(4,x-x(x1x2(4,x2(4>12e4,只需證->-,只需證->-1,只需證lnx1+x<lnx2+xx-xt4xt4xt4.=4>0=23=e,又0<x1<x2,所以h(x1(<h(x2(,所以(x1x2(4>12e4成立. (1)設(shè)函數(shù)g(x(=ekx-(k>0(,若f(x(≤g(x(恒成立,求k的最小值;e2lnx+x-2lnx-x-1≥0成立,進而分類討論0<k<1與k>1兩種情況,從而得解;(2)利用導(dǎo)數(shù)研究函數(shù)f(x(的性質(zhì)可得0<m<1,由題意可得m(x+x)<2x1x2(1-lnm),原不等式變形為1+lnx1x2<x1x2-x1x2lnm,利用分析法,構(gòu)造函數(shù)h(x)=lnx-x+1(x>0)證明lnx+1≤x,即1+lnx1x2≤x1x2,結(jié)合x1x2<x1x2-x1x2lnm即可證明.等價于1+2lnx≤x2ekx-?1+2lnx≤e2lnx+kx-?e2lnx+kx--(1+2lnx)≥0恒成立.設(shè)u(x)=ex-x-1,則u(x)x-x-1≥0,又v=2ln+=-2+<0,v(1(=1>0,0所以u(v(x)(≥u(v(x0((=0,即e2lnx+x-2lnx-x-1≥0,且e2lnx+x-2lnx0-x0-1=0;當0<k<1時,令m(k(=e2lnx+kx--(1+2lnx),易得關(guān)于k的函數(shù)y=e2lnx+kx與y=-在(0,1(上單調(diào)遞增,則m(k(<m(1(=e2lnx+x-2lnx-x-1,2lnx+kx--(1+2lnx)<0,不滿足題意;當k>1時,易得m(k(>m(1(=e2lnx+x-2lnx-x-1≥0,即e2lnx+kx--(1+2lnx)≥0恒成立;f(x)=,則f(x)=(x>0),令f(x)>0?0<x<1,令f(x)<0?x>1,max=f(1)=1,當x>1時,易得f(x)=>0恒成立,當x=時,f(x)=<0,又函數(shù)f(x)=m有兩個不同的實根x1,x2,即f(x(與y=m的圖像有兩個交點,作出f(x(與y=m的部分圖像如圖:所以0<m<1,且m=,m=,得mx=1+2lnx1,mx=1+2lnx2,有m(x+x)=2+2lnx1x2.要證+<,即證m(x+x)<2x1x2(1-lnm),即證2+2lnx1x2<2x1x2(1-lnm),即證1+lnx1x2<x1x2-x1x2lnm,由x1x2>0,lnm<0,得x1x2<x1x2-x1x2lnm.設(shè)h(x)=lnx-x+1(x>0),則h(x)=-1(x>0),令h(x)>0?0<x<1,令h(x)<0?x>1,所以h(x)max=h(1)=0,則h(x)≤0,即lnx+1≤x,所以1+lnx1x2≤x1x2,則1+lnx1x2≤x1x2<x1x2-x1x2lnm,即1+lnx1x2<x1x2-x1x2lnm,即證. +<-.(2)由題意,將命題成立轉(zhuǎn)化為+<-成立>0,令F(t(=lnt+,利用導(dǎo)數(shù)證明F(t(>0即可.則g(x(=2xlnx+x=x(2lnx+1(,1且g(e-=-,又f(x(恰有兩個零點,即x2lnx=a(a∈R(有兩個根,故函數(shù)g(x(與y=a有兩個交點,(2)因為f(x(的兩個零點分別為x1,x2(x1<x2),所以xlnx1-a=0,xlnx2-a=0,所以lnx1=,lnx2=,故lnx1-lnx2=--xx令F(t(=lnt+,又F(1(=0,F(xiàn)I(t(=+×=,所以4t4+(4-3e(t2+1=4m2+(4-3e(m+1,而y=4m2+(4-3e(m+1,其對稱軸為m=<1,所以y=4m2+(4-3e(m+1在(1,+∞(上單調(diào)遞增,所以4t4+(4-3e(t2+1>4+4-3e+1>0,于是FI(t(>0在(1,+∞(上恒成立,因此F(t(在(1,+∞(上單調(diào)遞增,所以F(t(>F(1(=0,所以原命題得證. 3(2023·湖北武漢·三模)已知函數(shù)f(x(=ax+(a-1(lnx+,a∈R.(1)討論函數(shù)f(x(的單調(diào)性;(2)若關(guān)于x的方程f(x(=xex-lnx+有兩個不相等的實數(shù)根x1、x2,函數(shù)f(x(的增區(qū)間和減區(qū)間;(2)(i)將方程變形為ex+lnx=a(x+lnx(,令t(x(=x+ln【解答過程】(1)解:因為f(x(=ax+(a-1(lnx+,所以f(x(=a+-==,其中x>0.②當a>0時,由f(x(>0得x>,由f(x(<0可得0<x<.所以函數(shù)f(x(的增區(qū)間為,+∞(,減區(qū)間為(0,.(2)解:(i)方程f(x(=xex-lnx+可化為xex=ax+alnx,即ex+lnx=a(x+lnx(.令t(x(=x+lnx,因為函數(shù)t(x(在(0,+∞(上單調(diào)遞增,易知函數(shù)t(x(=x+lnx的值域為R,t=at(*)有兩個不等的實根.所以,函數(shù)g(t(在(-∞,0(和(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增.作出函數(shù)g(t(和y=a的圖象如下圖所示:ex2>t1<1<t2.令(t>1(,只需證lnp>.所以h(p(在(1,+∞(上單調(diào)遞增,故h(p(>h(1(=0,即h(p(>0在(1,+∞(上恒成立.所以原不等式得證.已知f(x(=x2-(2)①由題意0<x1<1<x2,0<<1,作差得f(x1(-f((=f(x2(-f(x2+x2--2lnx2(,由此即可構(gòu)造函數(shù)g(x(=x--2lnx(x>1(比較大小,進而結(jié)合函數(shù)f(x(單 -h<0,所以構(gòu)造函數(shù)H(x(=h(x(-h=-x(-lnx+1(即可得證.【解答過程】(1)fI(x(=2x所以當0<x<1時,g(x(<g(1(=0,fI(x(<0,f(x(單調(diào)遞減,所以f(x(min=f(1(=1-a,若f(x(≥0,則f(x(min=f(1(=1-a≥0,解得a≤1,(1)可知f(x(min=f(1(=1-a<0?a>1,且0<x1<1<x2,0<<1所以f(x1(-f=x2+x2--2lnx2(,設(shè)g(x(=x--2lnx(x>1(,gI(x(=1+-=>0,(x>1(,所以函數(shù)g(x(單調(diào)遞增,所以g(x2(>g(1(=0,所以f(x1(-f>0,即f(x1(>f,又函數(shù)f(x(在(0,1(上面單調(diào)遞減,所以0<x1<<1,所以1<;②注意到x--a=x--a,只需x2lnx1-x1lnx2<x1-x2,即只需<,令h(x(=,則hI(x(=-,又>x2>1,所以h<h(x2(,所以要證h(x1(<h(x2(,只需h(x1(<h,即h(x1(-h<0,不妨設(shè)H(x(=h(x(-h=-x(-lnx+1(,則H(x(=-+lnx-1+1=lnx?,當0<x<1時,H(x(>0,H(x(單調(diào)遞增,當x>1時,H(x(>0,H(x(單調(diào)遞增,因為0<x1<1,所以H(x1(=h(x1(-h<H(1(=0,即h(x1(<h,又因為h<h(x2(,所以h(x1(=<=h(x2(,綜上所述,命題<x1+x2得證. (1,2(時,p(x(=g(x(-g(2-x((0<x<1(,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可證明x1+x2>2,再由基本不若a>0,則當0<x<1時,f(x(>0,f(x(單調(diào)遞增,當x>1時,f(x(<0,f(x(單調(diào)遞減;若a<0,則當0<x<1時,f(x(<0,f(x(單調(diào)遞減,當x>1時,f(x(>0,f(x(單調(diào)遞增.(ii)不妨設(shè)x1<x2,則0<x1<1<x2,且=.+x>x≥4>2,即x+x>2;-x2∈(0設(shè)p(x(=g(x(-g(2-x(=+---,0<x<1,則p(x(=-->--=->0,則p(x(<p(1(=0,即g(x(<g(2-x(,所以g(2-x1(>g(x1(=g(x2(,-x1>1,x2>1,g(x(在區(qū)間(1,+∞(內(nèi)單調(diào)遞減,所以2-x1<x2,即x1+x2>2,,所以x+x>2x1x2,故2x+2x>x+x+2x1x2=(x1+x2(2>4,所以x+x>2,得證.設(shè)h(x(=g(x(-g=-x(1-lnx(,x∈(0,+∞(,則h(x(=+lnx=lnx?≥0,所以h(x1(=g(x1(-g<0,即g(x1(<g.又g(x2(=g(x1(,所以g(x2(<g,,所以x+x>2x1x2>2,得證.x1+x22≥x1-x2x1+x22≥,所以fI(x(=x(2ex(.,所以fI(x(=x(2ex(.fI(x(<0,f(x(單調(diào)遞減,fI(x(>0,f(x(f(x)max=f(2(又f(1(=<f(3(=3,所以當x=2f(x)min=f(1(=e1e1e所以f(x(在[1,3[上的值域是由(1)可知0<x1<2<x2,且a>2.x1-x2lnx1-lnx2x1-x2lnx1-lnx2要證a(x+x(>2e2,即證ex+ex>2e2.22lnx1-lnx2即證x1+x2≥2lnx1-lnx2<0,t-1(t+1>lnt.t-1(t+1>lnt.故a(x+x(>2e2.(1)若函數(shù)f(x(在R上是增函數(shù),求a的取值范圍;(2)設(shè)g(x(=x-sinx-lnx,若g(x1(=g(x2((x1≠x2(,證明:、x1x2<2.(2)由(1)的信息可得x2-sinx2>x1-sinx1(x2>x1),利用分析法推理所以a的取值范圍為[-1,1].(2)函數(shù)g(x)=x-sinx-lnx的定義域為(0,+∞),由g(x1)=g(x2),得lnx2-lnx1=(x2-x1)-(sinx2-sinx1),由(1)知,函數(shù)f(x)=x-sinx在(0,+∞)上是增函數(shù),不妨令x2>x1>02-sinx2>x1-sinx1,即x2-x1>sinx2-sinx1,亦即(x2-x1)>(sinx2-sinx1),則(x2-x1)-(sinx2-sinx1)>(x2-x1),于是lnx2-lnx1>(x2-x1),則<2,-1x2x1x2x1x2-x1x1x2-1x2x1x2x1x2-x1x1x2x1x2>求導(dǎo)得φI(t)=-1-=-<0,則函數(shù)φ(t)在(1,+∞)上單調(diào)遞(2024·黑龍江哈爾濱·模擬預(yù)測)已知函數(shù)f(x(=x2lnx-m有兩個不同的零點x1,x2,且t=x+x.【解答過程】(1)f(x(=x2lnx-m=x2lnx2-m=(x2lnx2-2m(,u=x2,考慮函數(shù)g(u(=ulnu-2m,f(x(有兩個零點x1,x2,u1=x,u2=x,則g(u(有兩個零點u1,u2,g(u(=lnu+1,g(u(在(0,上單調(diào)遞減,,+∞(單調(diào)遞增,所以g(u(min=g=--2m<0,g(u(→-∞,所以-<m<0;即lnu1+ln(1+λ(<0①,∵u1lnu1=u2lnu2=λu1lnλu1,∴l(xiāng)nu1=λ(lnλ+lnu1(,∴l(xiāng)nu1=-,構(gòu)造φ(λ(=(λ>1(,φ(λ(=,所以y=1--lnλ在λ>1時單調(diào)遞減,所以y<1--ln1=0,φ(λ(在(1,+∞(單調(diào)遞減,∴φ(λ(>φ(λ+1(得證.(3)先證u1+u2>,0<u1<<u2,構(gòu)造F(u(=g(u(-g-u(,0<u<,F(xiàn)(u(=g(u(+g-u(=lnu-u(+2≤0,∴F(u(在(0,單調(diào)遞減,∴F(u1(>F=0,即g(u1(>g-u1(,∴g(u2(>g-u1(,∵g(u(在,+∞(單調(diào)遞增,∴u2>-u1,∴u1+u2>.由0<u1<<u2得0<eu1<1,eu2>1,所以ln(eu1(<,整理得:eu-2meu1-3u1-2m>0③,所以y=lnx->0,即lnx>,可得:eu-2meu2-3u2-2m<由③-④得:e(u-u(>(2me+3((u1-u2(, 題目1(2024·四川·一模)已知函數(shù)f(x(=ax2+x-lnx-a.(2)若f(x(有2個零點x1,x2,證明:a(x1+x2(2+(x1+x2(>2.-2(t-1(<0成立.【解答過程】(1)當a=1,函數(shù)f(x(=x2+x-lnx-1(x>0(,則f(x(=2x+1-==,可知當0<x<時,f(x(<0,f(x(單調(diào)遞減;當x>時,f(x(>0,f(x(單調(diào)遞增,則當x=時,f(x(取得極小值f=ln2-,也即為最小值,所以f(x(的最小值為ln2-;,x2是f(x(=ax2+x-lnx-a的兩個零點,則ax+x1-lnx1-a=0,ax+x2-lnx2-a=0,+x2((x1-x2(+(x1-x2(-(lnx1-lnx2(=0,整理得a(x1+x2(=-1,欲證明a(x1+x2(2+(x1+x2(>2,只需證明不等式-1((x1+x2(+(x1+x2(>2,t+1(>2,即證明(t+1(lnt-2(t-1(<0(0<t<1(即可,令h(t(=(t+1(lnt-2(t-1((0<t<1(,則h(t(=lnt+-1,又令u(t(=h(t(=lnt+-1(0<t<1(,則u(t(=-=<0,故當0<t<1時,h(t(單調(diào)遞增,則h+x2(2+(x1+x2(>2得證. 2(2024·全國·模擬預(yù)測)已知函數(shù)f(x(=x2(alnx-有兩個極值點x1,x2,且x1<x2.(2)證明:x1lnx1+x2lnx2>x1+x2.證即證lnt->0,構(gòu)造函數(shù)利用導(dǎo)數(shù)證明不等式.【解答過程】(1)函數(shù)f(x(=x2(alnx-x-的定義域是(0,+∞(,f(x(=2x(alnx-x-+x2-=2x(alnx-x(,因為函數(shù)f(x(有兩個不相等的極值點x1,x2,所以方程alnx-x=0在(0,+∞(上有兩個不相等的實數(shù)根x1,x2,所以a≠0,即直線y=與函數(shù)y=的圖象有兩個交點.當x∈(0,e(時,g(x(>0,g(x(單調(diào)遞增;當x∈(e,+∞(時,g(x(<0,g(x(單調(diào)遞減.,即a(lnt+lnx1(=tx1,整理得lnx1=(*(,要證x1lnx1+x2lnx2>x1+x2,只需證x1lnx1+tx1(lnt+lnx1(>x1(t+1(,t(lnt+lnx1(>t+1,即證(t+1(lnx1+tlnt>t+1,即證lnt->0,設(shè)h(t(=lnt-,(t>1(,因為h(t(=-=>0,所以h(t(在(1,+∞(上單調(diào)遞增,所以h(t(>ln1-=0,所以原不等式得證. 題目3(2024·貴州·模擬預(yù)測)已知函數(shù)f(x)=xex+1.(1)求函數(shù)f(x(的單調(diào)區(qū)間;要證x1+x2+ln(x1x2)>2,ex>e21t2>e2,只需證lnt1+lnt2>2.不妨設(shè)t1>t2>0,則只需證lnt1+lnt2=ln>2,即證ln>=.所以h(s)>h(1)=0,故x1+x2+ln(x1x2)>2. (2)若f(x(存在兩個極值點x1,x2(x2>x1>0(.2-x1+2>;f(x(>-+-2.<x1<1<x2,分析可知只需證明x2>-1,即證f(x(在(1,+∞(上的單調(diào)性,從而得到f(x(≥f(x2(=【解答過程】(1)函數(shù)f(x(=+a(lnx+-2的定義域為(0,+∞(,則fI(x(=++a-=,所以g(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,所以fI(x(≥0在(0,+∞(上恒成立,所以f(x(在(0,+∞(上單調(diào)遞增;(2)(ⅰ)由(1)可知g(x(在(0,+∞(上的最小值為g(1(=a-1,若f(x(存在兩個極值點x1,x2(x2>x1>0(,則g(x(=0有兩個不相等的實數(shù)根x1,x2(x2>x1>0(,且當0<x<x1時g(x(>0,即fI(x(>0,則f(x(單調(diào)遞增,當x1<x<x2時g(x(<0,即fI(x(<0,則f(x(單調(diào)遞減,當x>x2時g(x(>0,即fI(x(>0,則f(x(單調(diào)遞增,所以x1為f(x(的極大值點,x2為f(x(的極小值點, 1+lnx1x11+lnx2x 1+lnx1x11+lnx2x2(a-(x1==0=0La- 1+La-只需證x2>-1,令p(x(=lnx-(x>1(,則pI(x(=-=>0,所以p(x(在(1,+∞(上單調(diào)遞增,所以p(x(>p(1(=0,即lnx2->0成立,所以x2-x1+2>;>1,a=,且當1<x<x2時f(x(<0,當x>x2時f(x(>0,所以f(x(≥f(x2(=+a(lnx2+-2=+lnx2+-2=2lnx2+(lnx2(2+2-2=x2,令H(x(=lnx+(x>1(,則H(x(=-=>0,所以H(x(在(1,+∞(上單調(diào)遞增,所以H(x(>H(1(=1,即lnx>1->0(x>1(,所以>=-+-2,所以f(x(>-+-2. x-x2-sinx,通過研究函數(shù)h(x(=ex-x的最值情況,可得g(x(在R上單調(diào)遞增,又由,可設(shè)x1<0<x2.則x1+x2<0?-x2>x1?g(-x2(>g(x1(?g(-x2(>2-g(x2(,故證明當x>0時,g(x(+g(-x(-2>0即可.則在x=0處的切線方程為x-y+1=0;x-x2-sinx,則g(x(=ex-x-cosx.令h(x(=ex-x,則h(x(=ex-1.令h(x(>0?x>0,得h(x(在(0,+∞(上單調(diào)遞h(x(<0?x<0,得h(x(在(-∞,0(上單調(diào)遞減.則h(x(≥h(0(=1.=h(x(-cosx≥g(0(=0,當且僅當x=0時取等號.則不妨設(shè)x1<0<x2.令p(x(=g(x(+g(-x(-2=ex+e-x-x2-2,其中x∈(0,+∞(.則p(x(=ex-e-x-2x.令n(x(=ex-e-x-2x,x∈(0,+∞(.則n(x(=ex+e-x-2>2、ex?e-x-2=0,得n(x(在(0,+∞(上單調(diào)遞增,則p(x(=n(x(>n(0(=0,得p(x(在(0,+∞(上單調(diào)遞增,有p(x(>p(0(=0,即x>0時,g(x(+g(-x(-2>0.g(x2(+g(-x2(-2>0?g(-x2(>2-g(x2(,又g(x1(+g(x2(=2,則g(-x2(>g(x1(,又注意到g(x(在R上單調(diào)遞增,則-x2>x1?x1+x2<0. 已知函數(shù)f(x(=aex-xlnx有兩個極值點x1,x2,且Q(x0,f(x0((為曲線C:y=f(x(的拐點.令g(x(=(x>0(?g(x(=,易知y=-lnx-1(x>0(單調(diào)遞減,且x=1時y=0,x∈(1,+∞(時g(x(<0,即此時g(x(單調(diào)遞減,所以g(x(≤g(1(=,(2)令f(x(=aex-lnx-1=h(x(?h(x(=aex-,所以C在Q處的切線方程為:y=f(x0((x-x0(+f(x0(,令m(x(=aex-xlnx-f(x0((x-x0(-f(x0(,即證y=m(x(只有一個零點,易知m(x(=f(x(-f(x0(,即f(x(≥f(x0(?m(x(≥0,所以y=m(x(單調(diào)遞增,顯然m(x0(=0,所以y=m(x(只有一個零點,結(jié)合(2)知0<x1<x0<x2,根據(jù)f(x(的單調(diào)性知f(x0(<0=f(x1(=f(x2(,所以f(x0(<0<,證畢. 2滿足f(x1)+f(x2)=4,求證:x1+x2≥2.(2)首先將f(x1)+f(x2)=4化簡為(x1+x2)2+(x1+x2)=4+2(x1x2-lnx1x2),令x1x2=t,g(t)=t-lnt,tfI(x)=+2x+1,k=fI(1)=5.(2)f(x1)+f(x2)=2lnx1+x+x1+2lnx2+x+x2=42lnx1+x+x1+2lnx2+x+x2=4.(x1+x2)2+(x1+x2)=4+2(x1x2-lnx1x2)令x1x2=t,g(t)=t-lnt,t>0,(t)=1-=,3)(x1+x2-2)≥0,得到x1+x2-2≥0 題目4(23-24高二下·貴州貴陽·階段練習(xí))設(shè)fI(x(是函數(shù)f(x(的導(dǎo)函數(shù),若fI(x(可導(dǎo),則稱函數(shù)fI(x(的導(dǎo)函數(shù)為f(x(的二階導(dǎo)函數(shù),記為f″(x(.若f″(x(有變號零點x=x0,則稱點(x0,f(x0((為曲線y=f(x(的數(shù)y=f(x(的圖象的對稱中心.已知函數(shù)f(x(=x3+bx2-24x+d的圖象的對稱中心為(1,3(,求函數(shù)f(x((2)已知函數(shù)g(x(=emx-1+mx3-x2+x--1(m>0).(ii)若g(x1(+g(x2(=-2(x1≠x2(,求證:x1+x2<.(ⅱ)由(i)可得函數(shù)g(x(在R上單調(diào)遞增,將要證的不等式轉(zhuǎn)化為g(x1(+g-x1(>-2,構(gòu)造函數(shù)h(x(=又函數(shù)f(x(=x3+bx2-24x+d的圖象的對稱中心為(1,3∴f(x(=x3-3x2-24x+29,∴fI(x(=3x2-6x-24=3(x-4((x+2(,∵函數(shù)f/(x(在(-∞,-2(上為正,在(-2,4(上為負,在(4,+∞(上為正,∴函數(shù)f(x(在(-∞,-2(上單調(diào)遞增,在(-2,4(上單調(diào)遞減,在(4,+∞(上單調(diào)遞增.(2)(i)∵g(x(=emx-1+mx3-x2+x--1,/(x(=emx-1+mx2-2x+,∴g″(x(=emx-1+mx-2.″(x(=emx-1+mx-2在R上單調(diào)遞增,又g=e0+m×-+×--1=-1,∴曲線y=g(x(的拐點是,-1(.″(x(<0,g/(x(單調(diào)遞減;″(x(>0,g/(x(單調(diào)遞增;∴函數(shù)g(x(在R上單調(diào)遞增,不妨設(shè)x1<<x2.要證x1+x2<2<-x1,即證g(x2(<g-x1(,又g(x1(+g(x2(=-2,即證-2-g(x1(<g-x1(,即證g(x1(+g-x1(>-2.令h(x(=g(x(+g-x(,則h/(x(=g/(x(-g/-x(,∴h″(x(=g″(x(+g″-x(=(emx-1+mx-2(+e+m-x(-2e=emx-1+e1-mx-2=emx-1+-2≥0,e∴函數(shù)h/(x(=g/(x(-g/-x(在R上單調(diào)遞增,又h/=g/g/-=0,∴函數(shù)h(x(=g(x(+g-x(在上單調(diào)遞減,在,+∞(上單調(diào)遞增.∴h(x1(=g(x1(+g-x1(>h=g+g-=-2得證,即x1+x2<成立. A.a>1B.x1+x2<C.x1?x2<1D.x2-x1>則直線y=a與函數(shù)g(x(的圖象有兩個交點,g(x(=-,由圖可知,<x1<1<x2,因為f(x(=-a=,由f(x(>0可得0<x<,由f(x(<0可得x>,(,則必有0<x1<<x2,所以,0<x1<,則-x1>,令h(x(=f-x(-f(x(=ln-x(-a-x(-lnx+ax,其中0<x<,所以,h(x1(>h=0,即f-x1(-f(x1(>0,即f(x1(<f-x1(,又f(x2(=f(x1(=0,可得f(x2(<f-x1(,因為函數(shù)f(x(的單調(diào)遞減區(qū)間為,+∞(,則x2>-x1,即x1+x2>,故B錯誤;+x2=>,2>1由圖可知<x1<1<x2,則-x1>-1,又因為x2>,所以,x2-x1>-1,故D正確. 2(2024·全國·模擬預(yù)測)若函數(shù)f(x(=alnx+x2-2x有兩個不同的極值點x1,x2,且t-f(x1(+x2<f(x2(-x1恒成立,則實數(shù)t的取值范圍為()A.(-∞,-5(B.(-∞,-5[C.(-∞,2-2ln2(D.(-∞,2-2ln2[【解題思路】首先對f(x(求導(dǎo),得fI(x(=(x>0(,根據(jù)題意得到方程x2-2x+a=0有兩個不相等f(x1(+f(x2(-x1-x2關(guān)于參數(shù)a的表達式,從而構(gòu)造函數(shù),利用導(dǎo)數(shù)知識進行求解.【解答過程】依題意得fI(x(=+x-2=(x>0(,若函數(shù)f(x(有兩個不同的極值點x1,x2,則方程x2-2x+a=0有兩個不相等的正實數(shù)根x1,x2,(Δ=4-4a>0x1+x2=2>0,解得0<a<1,1x2=a>0因為t-f(x1(+x2<f(x2(-x1,可得t<f(x1(+f(x2(-x1-x2=alnx1+x-2x1+alnx2+x-2x2-x1-x2=aln(x1x2(+(x+x(-3(x1+x2(=aln(x1x2(+(x1+x2(2-x1x2-3(x1+x2(=alna+×22-a-3×2=alna-a-4.設(shè)h(a(=alna-a-4(0<a<1(,則hI(a(=lna<0,則h(a(單調(diào)遞減,h(a(>h(1(=-5,可知t≤-5. 【解答過程】函數(shù)f(x)=(x2+2((x3-3ax2+b(有且僅有兩個不同的零點x1,x2,(x(=x3-3ax2+b,即g(x(有且僅有兩個不同的零點x1,x2,gI(x(=3x2-6ax=3x(x-2a(=0得x=0或x=2a,所以g(x(在(-∞,0(,(2a,+∞(上單調(diào)遞增,在(0,2a(上單調(diào)遞減,同理若a<0,g(x(在(-∞,2a(,(0,+∞(上單調(diào)遞增,在(2a,0(上單調(diào)遞減,3則g(x(有一根是確定的為2a,又因為g(x(=x3-3ax2+b=(x-2a(2(x+a(,所以g(x(的另一根為-a,-1<-1<-1. 4(2024·遼寧·三模)已知函數(shù)f(x)=lnx+x2-ax存在兩個極值點,若對任意滿足f(x1)=f(x2)=f(x3)的x1,x2,x3(x1<x2<x3),均有f(ex)<f(ex)<f(ex),則實數(shù)a的取值范圍為()【解答過程】函數(shù)f(x)=lnx+21ex2-ax由函數(shù)f(x)存在兩個極值點,得fI(x)=0,即x2-eax+e=0有兩個不等的正根t1,t2(t1<t2),(Δ=e2a2-4e>0Lt1t2=et1+t2=ea>0x>t2I(x)Lt1t2=e于是函數(shù)f(x)在(0,t1),(t2,+∞)上單調(diào)遞增,在(t1,t2)上單調(diào)遞減,令f(x1)=f(x2)=f(x3)=m,(x1<x2<x3),則直線y=m與f(x)的圖象有3個公共點,此時0<x1<t1<x2<t2<x3,顯然ex>et,令y=ex-x,x>0,求導(dǎo)得yI=ex-1>0,由x1<x2<x3x<ex<ex,因為對任意滿足f(x1)=f(x2)=f(x3)的x1,x2,x3(x1<x2<x3),均有f(ex)<f(ex)<f(ex),t>t2, 5(2023·四川南充·一模)已知函數(shù)f(x)=|lnx-+2|-m(0<m<3)有兩個不同的零點x1,x2(x1<x2)A.1B.2C.3D.4函數(shù)f(x(=|lnx-+2|-m(0<m<3(有兩個不同零點x1,x2(x1<x2(,轉(zhuǎn)化為|lnx-+2|=m有兩個交lnx-+2【解答過程】由函數(shù)f(x(=|lnx-+2|-m(0<m<3(有兩個不同零點x1,x2(x1<x2(,lnx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版婚內(nèi)背叛離婚合同樣本版
- 測試信號課程設(shè)計
- 微機時鐘課程設(shè)計
- 泰勒課程設(shè)計理論實例
- 《生產(chǎn)主管職業(yè)化訓(xùn)練教程》
- 稻谷干燥系統(tǒng)課程設(shè)計
- 電鍍課程設(shè)計總結(jié)
- 美少女頭像繪畫課程設(shè)計
- 骨科護士工作總結(jié)
- 金融行業(yè)客服崗位總結(jié)
- 機電安裝工程質(zhì)量控制
- 江蘇省宿遷市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)
- Unit 1 Art Using Language (教案)-高中英語人教版(2019)·選擇性必修第三冊
- 2023-2024學(xué)年鞍山市重點中學(xué)高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析
- 基于PLC的自動打鈴控制器
- 中式烹調(diào)技藝教案
- 招標代理及政府采購常識匯編
- 人工智能引論智慧樹知到課后章節(jié)答案2023年下浙江大學(xué)
- 醫(yī)保按病種分值付費(DIP)院內(nèi)培訓(xùn)
- 國開2023秋《藥劑學(xué)》形考任務(wù)1-3參考答案
- 釣魚比賽招商方案范本
評論
0/150
提交評論