2023屆山東省新泰市二中數(shù)學高三第一學期期末達標測試試題含解析_第1頁
2023屆山東省新泰市二中數(shù)學高三第一學期期末達標測試試題含解析_第2頁
2023屆山東省新泰市二中數(shù)學高三第一學期期末達標測試試題含解析_第3頁
2023屆山東省新泰市二中數(shù)學高三第一學期期末達標測試試題含解析_第4頁
2023屆山東省新泰市二中數(shù)學高三第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.2.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17643.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個4.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.5.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.6.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.67.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.9.在復平面內(nèi),復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若,則的值為()A. B. C. D.11.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.12.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法流程圖,則輸出的S的值是______.14.已知函數(shù),若函數(shù)有6個零點,則實數(shù)的取值范圍是_________.15.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),,則的面積為________.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.18.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和.20.(12分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.22.(10分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.2、A【解析】

根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎(chǔ)題.3、B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.4、A【解析】

根據(jù)復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎(chǔ)題.5、C【解析】

根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機變量服從正態(tài)分布,則.6、D【解析】

作,垂足為,過點N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結(jié)合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.7、B【解析】

根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質(zhì)的應用,題目比較綜合.8、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9、B【解析】

化簡復數(shù)為的形式,然后判斷復數(shù)的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.10、C【解析】

根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力11、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.12、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎(chǔ)題.14、【解析】

由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【詳解】當時,函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實數(shù)滿足,當時,由對勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當時,,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數(shù)關(guān)于直線對稱,則函數(shù)關(guān)于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查分段函數(shù)的應用,復合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學思想,等價轉(zhuǎn)化的數(shù)學思想等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.15、【解析】

根據(jù)個全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.16、【解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)x=1(2)證明見解析(3)【解析】

(1)令,根據(jù)導函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設(shè),分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調(diào)遞增;當時,,在單調(diào)遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設(shè),,記,△,①當△時,即時,恒成立,故單調(diào)遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設(shè)的兩個不等實根分別為,,又,于是,故當時,,從而在單調(diào)遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調(diào)性,零點;(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導;屬于難題.18、(1)見解析;(2)【解析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設(shè)幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.19、,;.【解析】

由,公差,有,,成等比數(shù)列,所以,解得.進而求出數(shù)列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項公式.數(shù)列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項公式,前項和公式的應用等基礎(chǔ)知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.20、(1),(2)【解析】

先求出,再求圓的半徑和極坐標方程;(2)設(shè)求出,,再求出得解.【詳解】(1)將化成直角坐標方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論