版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校在高一年級進行了數學競賽(總分100分),下表為高一·一班40名同學的數學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.122.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.3.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.設是定義域為的偶函數,且在單調遞增,,則()A. B.C. D.5.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.36.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.7.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.已知m為實數,直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.2910.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.11.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.12.已知關于的方程在區(qū)間上有兩個根,,且,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數是______.14.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.15.曲線在處的切線的斜率為________.16.已知向量,,若向量與向量平行,則實數___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數t的取值范圍.18.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.19.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數記為.(1)求的分布列及數學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數的取值范圍.21.(12分)已知函數,.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數的取值范圍.22.(10分)已知函數為實數)的圖像在點處的切線方程為.(1)求實數的值及函數的單調區(qū)間;(2)設函數,證明時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數,的取值為成績大于等于60且小于90的人數,故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎知識;考查運算求解能力,邏輯推理能力和數學應用意識.2、D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.3、C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.4、C【解析】
根據偶函數的性質,比較即可.【詳解】解:顯然,所以是定義域為的偶函數,且在單調遞增,所以故選:C【點睛】本題考查對數的運算及偶函數的性質,是基礎題.5、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.6、C【解析】
利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。7、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.8、A【解析】
根據直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數的值后要代入檢驗看兩直線是否重合.9、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.10、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.11、A【解析】
設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.12、C【解析】
先利用三角恒等變換將題中的方程化簡,構造新的函數,將方程的解的問題轉化為函數圖象的交點問題,畫出函數圖象,再結合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數形結合法,求得范圍.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數,是.故答案為:-40【點睛】本題考查二項式定理性質,關鍵是先展開再利用排列組合思想解決,屬于基礎題.14、1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.15、【解析】
求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.16、【解析】
由題可得,因為向量與向量平行,所以,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數的導數,由于參數的范圍對導數的符號有影響,對參數分類,再研究函數的單調區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數在上是減函數,所以成立;當時,若則,故函數在上是增函數,即對時,,與題意不符;綜上,為所求.【點睛】本題考查導數在最大值與最小值問題中的應用,求解本題關鍵是根據導數研究出函數的單調性,由最值的定義得出函數的最值,本題中第一小題是求出函數的單調區(qū)間,第二小題是一個求函數的最值的問題,此類題運算量較大,轉化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.18、(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數關系、弦長公式、函數最值、橢圓性質的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.19、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據判別式即可證明.(2)根據向量的數量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,所以.故直線與橢圓相切.(2)設,,當時,,,,所以,即.當時,由得,則,,.因為.所以,即.故為定值.【點睛】本題考查橢圓的簡單性質,考查向量的運算,注意直線方程和橢圓方程聯(lián)立,運用韋達定理,考查化簡整理的運算能力,屬于中檔題.20、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21、(1)(2)【解析】
(1)零點分段法,分,,討論即可;(2)當時,原問題可轉化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數,考查學生的運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版婚內背叛離婚合同樣本版
- 測試信號課程設計
- 微機時鐘課程設計
- 泰勒課程設計理論實例
- 《生產主管職業(yè)化訓練教程》
- 稻谷干燥系統(tǒng)課程設計
- 電鍍課程設計總結
- 美少女頭像繪畫課程設計
- 骨科護士工作總結
- 金融行業(yè)客服崗位總結
- 落實國家組織藥品集中采購使用檢測和應急預案
- 報價經理崗位職責
- 汝州某燃煤熱電廠施工組織設計
- 豬場配懷工作安排方案設計
- 《廣東省普通高中學生檔案》模板
- GB/T 2-2016緊固件外螺紋零件末端
- GB/T 12467.5-2009金屬材料熔焊質量要求第5部分:滿足質量要求應依據的標準文件
- GB 17740-1999地震震級的規(guī)定
- 安全生產事故舉報獎勵制度
- 冠心病健康教育完整版課件
- 國家開放大學《理工英語1》單元自測8試題答案
評論
0/150
提交評論