版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第39講圓的方程、直線(xiàn)與圓的位置關(guān)系(精講)題型目錄一覽①圓的方程②點(diǎn)與圓的位置關(guān)系③與圓有關(guān)的軌跡問(wèn)題④直線(xiàn)與圓相交⑤直線(xiàn)與圓相切、相離一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、圓的基本概念平面內(nèi)到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)叫圓.二、圓的基本性質(zhì)、定理與公式1.圓的四種方程(1)圓的標(biāo)準(zhǔn)方程:SKIPIF1<0,圓心坐標(biāo)為(a,b),半徑為SKIPIF1<0(2)圓的一般方程:SKIPIF1<0,圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0(3)圓的直徑式方程:若SKIPIF1<0,則以線(xiàn)段AB為直徑的圓的方程是SKIPIF1<0(4)圓的參數(shù)方程:①SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù));②SKIPIF1<0的參數(shù)方程為SKIPIF1<0(SKIPIF1<0為參數(shù)).注意:對(duì)于圓的最值問(wèn)題,往往可以利用圓的參數(shù)方程將動(dòng)點(diǎn)的坐標(biāo)設(shè)為SKIPIF1<0(SKIPIF1<0為參數(shù),SKIPIF1<0為圓心,r為半徑),以減少變量的個(gè)數(shù),建立三角函數(shù)式,從而把代數(shù)問(wèn)題轉(zhuǎn)化為三角問(wèn)題,然后利用正弦型或余弦型函數(shù)的有界性求解最值.2.點(diǎn)與圓的位置關(guān)系判斷(1)點(diǎn)SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系:①SKIPIF1<0點(diǎn)P在圓外;②SKIPIF1<0點(diǎn)P在圓上;③SKIPIF1<0點(diǎn)P在圓內(nèi).(2)點(diǎn)SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系:①SKIPIF1<0點(diǎn)P在圓外;②SKIPIF1<0點(diǎn)P在圓上;③SKIPIF1<0點(diǎn)P在圓內(nèi).三、直線(xiàn)與圓的位置關(guān)系直線(xiàn)與圓的位置關(guān)系有3種,相離,相切和相交四、直線(xiàn)與圓的位置關(guān)系判斷(1)幾何法(圓心到直線(xiàn)的距離和半徑關(guān)系)圓心SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離,則SKIPIF1<0:SKIPIF1<0直線(xiàn)與圓相交,交于兩點(diǎn)SKIPIF1<0,SKIPIF1<0;SKIPIF1<0直線(xiàn)與圓相切;SKIPIF1<0直線(xiàn)與圓相離(2)代數(shù)方法(幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題即交點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為方程根個(gè)數(shù))由SKIPIF1<0,消元得到一元二次方程SKIPIF1<0,SKIPIF1<0判別式為SKIPIF1<0,則:SKIPIF1<0直線(xiàn)與圓相交;SKIPIF1<0直線(xiàn)與圓相切;SKIPIF1<0直線(xiàn)與圓相離.【常用結(jié)論】關(guān)于圓的切線(xiàn)的幾個(gè)重要結(jié)論(1)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的圓的切線(xiàn)方程為SKIPIF1<0.(2)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的圓的切線(xiàn)方程為SKIPIF1<0(3)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的圓的切線(xiàn)方程為SKIPIF1<0(4)求過(guò)圓SKIPIF1<0外一點(diǎn)SKIPIF1<0的圓的切線(xiàn)方程時(shí),應(yīng)注意理解①所求切線(xiàn)一定有兩條;②設(shè)直線(xiàn)方程之前,應(yīng)對(duì)所求直線(xiàn)的斜率是否存在加以討論.設(shè)切線(xiàn)方程為SKIPIF1<0,利用圓心到切線(xiàn)的距離等于半徑,列出關(guān)于SKIPIF1<0的方程,求出SKIPIF1<0值.若求出的SKIPIF1<0值有兩個(gè),則說(shuō)明斜率不存在的情形不符合題意;若求出的SKIPIF1<0值只有一個(gè),則說(shuō)明斜率不存在的情形符合題意.二、題型分類(lèi)精講二、題型分類(lèi)精講題型一圓的方程策略方法求圓的方程的兩種方法【典例1】已知圓SKIPIF1<0過(guò)三點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的圓心和半徑分別為(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A【分析】利用斜率可以推出SKIPIF1<0是直角三角形,而直角三角形外接圓的直徑是斜邊長(zhǎng),圓心是斜邊中點(diǎn),據(jù)此求解.【詳解】由題意,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0是直角三角形,且SKIPIF1<0為斜邊,直角三角形外接圓的直徑是斜邊長(zhǎng),圓心是斜邊中點(diǎn),又SKIPIF1<0,于是SKIPIF1<0的外接圓半徑為SKIPIF1<0,圓心是SKIPIF1<0的中點(diǎn),即SKIPIF1<0.故選:A【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專(zhuān)題練習(xí))若方程SKIPIF1<0表示圓,則SKIPIF1<0實(shí)數(shù)的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)二元二次方程表示圓的條件列不等式,由此求得SKIPIF1<0的取值范圍.【詳解】由圓的一般式方程可得SKIPIF1<0,即SKIPIF1<0,求得SKIPIF1<0,故選:A2.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知圓SKIPIF1<0的方程為SKIPIF1<0,則圓心SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將圓的方程配成標(biāo)準(zhǔn)方程,可求得圓心坐標(biāo).【詳解】圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故選:A.3.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知直線(xiàn)SKIPIF1<0是圓SKIPIF1<0的對(duì)稱(chēng)軸,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由圓的方程可得圓心坐標(biāo),根據(jù)圓心在直線(xiàn)SKIPIF1<0上可求得結(jié)果.【詳解】由圓SKIPIF1<0方程得:圓心SKIPIF1<0,SKIPIF1<0直線(xiàn)SKIPIF1<0是圓SKIPIF1<0的對(duì)稱(chēng)軸,SKIPIF1<0圓心SKIPIF1<0在直線(xiàn)SKIPIF1<0上,即SKIPIF1<0,解得:SKIPIF1<0.故選:A.4.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則其外接圓的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先設(shè)圓的方程為SKIPIF1<0,根據(jù)題意,列出方程組求解,即可求出結(jié)果.【詳解】設(shè)SKIPIF1<0的外接圓的方程為SKIPIF1<0,因?yàn)镾KIPIF1<0的頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因此SKIPIF1<0即為所求圓的方程.故選:A.【點(diǎn)睛】本題主要考查求圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法求解即可,屬于基礎(chǔ)題型.5.(2023·全國(guó)·高三專(zhuān)題練習(xí))以點(diǎn)SKIPIF1<0為圓心,且與直線(xiàn)SKIPIF1<0相切的圓的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出圓心到直線(xiàn)的距離即得圓的半徑,即得圓的方程.【詳解】由題得圓心到直線(xiàn)的距離SKIPIF1<0,所以圓的方程為SKIPIF1<0.故選:D.6.(2023·全國(guó)·高三專(zhuān)題練習(xí))圓C:SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0對(duì)稱(chēng)的圓的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)點(diǎn)關(guān)于直線(xiàn)SKIPIF1<0對(duì)稱(chēng)的性質(zhì),結(jié)合圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【詳解】由圓C:SKIPIF1<0,可知圓心坐標(biāo):SKIPIF1<0,半徑為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0的對(duì)稱(chēng)點(diǎn)為SKIPIF1<0,所以圓C:SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0對(duì)稱(chēng)的圓的方程是SKIPIF1<0,故選:C7.(2023·高三課時(shí)練習(xí))關(guān)于x、y的方程SKIPIF1<0表示一個(gè)圓的充要條件是(
).A.SKIPIF1<0,且SKIPIF1<0B.SKIPIF1<0,且SKIPIF1<0C.SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0【答案】D【分析】根據(jù)圓的一般式方程可得答案.【詳解】關(guān)于x、y的方程SKIPIF1<0表示一個(gè)圓的充要條件是SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.故選:D8.(2023秋·湖南·高三臨澧縣第一中學(xué)校聯(lián)考開(kāi)學(xué)考試)已知圓SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作圓C的兩條切線(xiàn),切點(diǎn)分別為A,B.則四邊形SKIPIF1<0的面積為(
).A.6 B.12 C.14 D.18【答案】B【分析】求出圓心和半徑,得到切線(xiàn)長(zhǎng),求出四邊形的面積.【詳解】依題意,圓SKIPIF1<0,圓心為SKIPIF1<0,半徑為3,則SKIPIF1<0,SKIPIF1<0,
故SKIPIF1<0,由對(duì)稱(chēng)性可知,SKIPIF1<0與SKIPIF1<0全等,故四邊形SKIPIF1<0的面積SKIPIF1<0.故選:B9.(2023秋·山東·高三校聯(lián)考開(kāi)學(xué)考試)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0且圓心在直線(xiàn)SKIPIF1<0上的圓與SKIPIF1<0軸相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】C【分析】由題意設(shè)圓的圓心、半徑分別為SKIPIF1<0,則圓的方程為SKIPIF1<0,結(jié)合已知條件即可求出圓的方程,在圓的方程中令SKIPIF1<0,即可求出SKIPIF1<0,SKIPIF1<0兩點(diǎn)的坐標(biāo),由此即可得解.【詳解】因?yàn)閳A心在直線(xiàn)SKIPIF1<0上,所以設(shè)圓的圓心、半徑分別為SKIPIF1<0,則圓的方程為SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入圓的方程有SKIPIF1<0,解得SKIPIF1<0,所以圓的方程為SKIPIF1<0,在圓的方程中令SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:C.二、填空題10.(2023秋·上海黃浦·高三上海市大同中學(xué)??奸_(kāi)學(xué)考試)已知圓SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】根據(jù)圓的一般方程得出圓的半徑,然后根據(jù)已知列出方程,求解即可得出答案.【詳解】由已知可得,圓的半徑SKIPIF1<0.所以,圓的面積為SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023秋·云南昆明·高三云南省昆明市第十中學(xué)校考開(kāi)學(xué)考試)已知圓SKIPIF1<0的半徑為3,則SKIPIF1<0.【答案】SKIPIF1<0【分析】化簡(jiǎn)圓的方程為圓的標(biāo)準(zhǔn)方程,根據(jù)題意列出方程,即可求解.【詳解】將圓SKIPIF1<0的方程轉(zhuǎn)化為SKIPIF1<0,因?yàn)閳ASKIPIF1<0的半徑為3,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.12.(2023秋·江西吉安·高三吉安三中校考開(kāi)學(xué)考試)請(qǐng)寫(xiě)出一個(gè)過(guò)點(diǎn)SKIPIF1<0,且與直線(xiàn)SKIPIF1<0相切的圓的標(biāo)準(zhǔn)方程,為.【答案】SKIPIF1<0(答案不唯一)【分析】寫(xiě)出一個(gè)符合條件的圓的標(biāo)準(zhǔn)方程即可.【詳解】設(shè)SKIPIF1<0為直徑的一個(gè)端點(diǎn),SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離SKIPIF1<0,可知半徑SKIPIF1<0,又若圓心SKIPIF1<0在直線(xiàn)SKIPIF1<0上,且SKIPIF1<0,解得SKIPIF1<0,所求圓的方程為SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).13.(2023·全國(guó)·高三專(zhuān)題練習(xí))在平面直角坐標(biāo)系中,過(guò)SKIPIF1<0四點(diǎn)的圓的方程為.【答案】SKIPIF1<0【分析】根據(jù)題意,設(shè)圓的方程為SKIPIF1<0,取三個(gè)點(diǎn)的坐標(biāo)代入,得到方程組,求解即可得到結(jié)果.【詳解】設(shè)圓的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)分別代入可得,SKIPIF1<0,解得SKIPIF1<0則可得圓的方程為SKIPIF1<0故答案為:SKIPIF1<014.(2023春·河南商丘·高三臨潁縣第一高級(jí)中學(xué)校聯(lián)考階段練習(xí))圓心與圓SKIPIF1<0的圓心重合,且過(guò)點(diǎn)SKIPIF1<0的圓的方程為.【答案】SKIPIF1<0【分析】根據(jù)同圓心設(shè)出方程SKIPIF1<0,代入點(diǎn)SKIPIF1<0求出SKIPIF1<0即可求解.【詳解】依題意,設(shè)所求圓的方程為SKIPIF1<0,由于所求圓過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以所求圓的方程為SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知圓C:SKIPIF1<0,則當(dāng)圓C的面積最小時(shí),圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值為.【答案】SKIPIF1<0【分析】利用配方法,結(jié)合二次函數(shù)的性質(zhì)、圓的幾何性質(zhì)進(jìn)行求解即可.【詳解】SKIPIF1<0,所以半徑SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),半徑最小,此時(shí)圓心為SKIPIF1<0,圓心到原點(diǎn)的距離為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以原點(diǎn)在圓外,根據(jù)圓的性質(zhì),圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值為SKIPIF1<0,故答案為:SKIPIF1<016.(2023春·湖南長(zhǎng)沙·高三長(zhǎng)沙麓山國(guó)際實(shí)驗(yàn)學(xué)校??茧A段練習(xí))在平面直角坐標(biāo)系中,經(jīng)過(guò)直線(xiàn)SKIPIF1<0與兩坐標(biāo)軸的交點(diǎn)及點(diǎn)SKIPIF1<0的圓的方程為.【答案】SKIPIF1<0【分析】根據(jù)直線(xiàn)的方程求出直線(xiàn)與坐標(biāo)軸的交點(diǎn),利用待定系數(shù)法及點(diǎn)在圓上即可求解.【詳解】令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以直線(xiàn)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以直線(xiàn)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,設(shè)圓的方程為SKIPIF1<0,則因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)都在圓上,所以SKIPIF1<0,解得SKIPIF1<0故所求圓的方程為SKIPIF1<0故答案為:SKIPIF1<0.題型二點(diǎn)與圓的位置關(guān)系策略方法判斷集合關(guān)系的三種方法在處理點(diǎn)與圓的位置關(guān)系問(wèn)題時(shí),應(yīng)注意圓的不同方程形式對(duì)應(yīng)的不同判斷方法,另外還應(yīng)注意其他約束條件,如圓的一般方程的隱含條件對(duì)參數(shù)的制約.【典例1】“m<1”是“點(diǎn)P(1,1)在圓C:x2+y2﹣2mx=0外”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件【答案】B【分析】根據(jù)點(diǎn)與圓的位置,結(jié)合充分性、必要性的定義進(jìn)行判斷即可.【詳解】由x2+y2﹣2mx=0可得SKIPIF1<0,該方程表示圓,所以有SKIPIF1<0,當(dāng)點(diǎn)P(1,1)在圓C:x2+y2﹣2mx=0外時(shí),有SKIPIF1<0,所以此時(shí)SKIPIF1<0,顯然由SKIPIF1<0不一定能推出SKIPIF1<0,但是由SKIPIF1<0一定能推出SKIPIF1<0,所以“m<1”是“點(diǎn)P(1,1)在圓C:x2+y2﹣2mx=0外”的必要不充分條件,故選:B【題型訓(xùn)練】一、單選題1.(2023春·福建·高三校聯(lián)考階段練習(xí))設(shè)圓SKIPIF1<0:SKIPIF1<0,若直線(xiàn)SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的交點(diǎn)個(gè)數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上都有可能【答案】C【分析】利用直線(xiàn)過(guò)定點(diǎn),判斷定點(diǎn)在圓內(nèi)即可.【詳解】解:SKIPIF1<0直線(xiàn)SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,SKIPIF1<0直線(xiàn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0在圓內(nèi),SKIPIF1<0直線(xiàn)SKIPIF1<0與SKIPIF1<0的交點(diǎn)個(gè)數(shù)為SKIPIF1<0個(gè).故選:SKIPIF1<0.2.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知兩直線(xiàn)SKIPIF1<0與SKIPIF1<0的交點(diǎn)在圓SKIPIF1<0的內(nèi)部,則實(shí)數(shù)k的取值范圍是(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求出兩直線(xiàn)的交點(diǎn)坐標(biāo),利用該交點(diǎn)到圓心的距離小于半徑列式,解不等式可得結(jié)果.【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則兩直線(xiàn)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,依題意得SKIPIF1<0,解得SKIPIF1<0.故選:B3.(2023·全國(guó)·高三專(zhuān)題練習(xí))點(diǎn)SKIPIF1<0為圓SKIPIF1<0外一點(diǎn),則直線(xiàn)SKIPIF1<0與該圓的位置關(guān)系為(
)A.相交 B.相切 C.相離 D.不確定【答案】A【分析】利用點(diǎn)與圓的位置關(guān)系及直線(xiàn)與圓的位置關(guān)系的判斷方法,結(jié)合點(diǎn)到直線(xiàn)的距離公式即可求解;【詳解】因?yàn)辄c(diǎn)SKIPIF1<0為圓SKIPIF1<0外一點(diǎn),所以SKIPIF1<0.圓SKIPIF1<0的圓心SKIPIF1<0,半徑為SKIPIF1<0,所以圓心SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離為SKIPIF1<0,即SKIPIF1<0.所以直線(xiàn)SKIPIF1<0與該圓的位置關(guān)系為相交.故選:A.4.(2023·遼寧·校聯(lián)考二模)已知圓SKIPIF1<0,直線(xiàn)l:SKIPIF1<0,若l與圓O相交,則(
).A.點(diǎn)SKIPIF1<0在l上 B.點(diǎn)SKIPIF1<0在圓O上C.點(diǎn)SKIPIF1<0在圓O內(nèi) D.點(diǎn)SKIPIF1<0在圓O外【答案】D【分析】根據(jù)l與圓O相交,可知圓心到直線(xiàn)的距離小于半徑,列出不等式,再判斷點(diǎn)與直線(xiàn)和圓的關(guān)系.【詳解】由已知l與圓O相交,,可知圓心到直線(xiàn)的距離小于半徑,則有SKIPIF1<0,故SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0,所以點(diǎn)不在直線(xiàn)l上,故A錯(cuò)誤;又SKIPIF1<0,則點(diǎn)SKIPIF1<0在圓O外,故D正確.故選:D.5.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知點(diǎn)SKIPIF1<0在圓C:SKIPIF1<0的外部,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)條件得到圓SKIPIF1<0的標(biāo)準(zhǔn)方程,再由圓的半徑的平方大于0得到SKIPIF1<0;再根據(jù)點(diǎn)SKIPIF1<0在圓SKIPIF1<0的外部得到SKIPIF1<0,即可求解得到SKIPIF1<0的取值范圍.【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0①,又∵點(diǎn)SKIPIF1<0在圓SKIPIF1<0的外部,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0②,由①②得SKIPIF1<0,故選:B.二、填空題6.(2023·全國(guó)·高三專(zhuān)題練習(xí))若坐標(biāo)原點(diǎn)在圓SKIPIF1<0的內(nèi)部,則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【分析】根據(jù)原點(diǎn)在圓內(nèi)可建立不等式,求解即可.【詳解】∵原點(diǎn)SKIPIF1<0在圓SKIPIF1<0的內(nèi)部,SKIPIF1<0,解得SKIPIF1<0所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0故答案為:SKIPIF1<07.(2023·北京·北京四中校考模擬預(yù)測(cè))已知圓SKIPIF1<0,若點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,并且點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離為SKIPIF1<0,則滿(mǎn)足條件的點(diǎn)SKIPIF1<0的個(gè)數(shù)為.【答案】3【分析】設(shè)SKIPIF1<0,根據(jù)點(diǎn)P到直線(xiàn)SKIPIF1<0的距離為SKIPIF1<0,求得SKIPIF1<0,再由SKIPIF1<0在圓SKIPIF1<0上,得到SKIPIF1<0,取得SKIPIF1<0或SKIPIF1<0,進(jìn)而求得滿(mǎn)足條件的點(diǎn)的個(gè)數(shù),得到答案.【詳解】設(shè)SKIPIF1<0,由點(diǎn)P到直線(xiàn)SKIPIF1<0的距離為SKIPIF1<0,得SKIPIF1<0兩邊平方整理得到SKIPIF1<0①因?yàn)镾KIPIF1<0在圓SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0②聯(lián)立①②得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由①②可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0當(dāng)SKIPIF1<0時(shí),由①②可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0綜上,滿(mǎn)足條件的點(diǎn)P的個(gè)數(shù)為SKIPIF1<0.故答案為:3.8.(2023·全國(guó)·高三專(zhuān)題練習(xí))設(shè)點(diǎn)P(x,y)是圓:x2+(y-3)2=1上的動(dòng)點(diǎn),定點(diǎn)A(2,0),B(-2,0),則SKIPIF1<0的最大值為.【答案】12【解析】由平面向量的數(shù)量積公式,可得SKIPIF1<0的解析式;再由SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),可得SKIPIF1<0,SKIPIF1<0的取值范圍;從而求得SKIPIF1<0的最大值.【詳解】SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最大值為:12故答案為:SKIPIF1<0.題型三與圓有關(guān)的軌跡問(wèn)題策略方法求與圓有關(guān)的軌跡問(wèn)題的四種方法(1)直接法:直接根據(jù)題設(shè)給定的條件列出方程求解.(2)定義法:根據(jù)圓的定義列方程求解.(3)幾何法:利用圓的幾何性質(zhì)得出方程求解.(4)代入法(相關(guān)點(diǎn)法):找出要求的點(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿(mǎn)足的關(guān)系式求解.【典例1】已知直線(xiàn)SKIPIF1<0,點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng),若直線(xiàn)SKIPIF1<0上存在點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由SKIPIF1<0求出點(diǎn)SKIPIF1<0的軌跡,由直線(xiàn)SKIPIF1<0與此軌跡存在公共點(diǎn)求出SKIPIF1<0的范圍作答.【詳解】依題意,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由已知得SKIPIF1<0,而點(diǎn)SKIPIF1<0既在直線(xiàn)SKIPIF1<0上,又在圓SKIPIF1<0上,因此直線(xiàn)SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn),又圓SKIPIF1<0的圓心為原點(diǎn),半徑為SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B【題型訓(xùn)練】一、單選題1.(2023·湖南郴州·統(tǒng)考模擬預(yù)測(cè))已知A,B是SKIPIF1<0:SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),P是線(xiàn)段SKIPIF1<0的中點(diǎn),若SKIPIF1<0,則點(diǎn)P的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由圓的垂徑定理得SKIPIF1<0,利用勾股關(guān)系求得SKIPIF1<0,結(jié)合圓的定義即可求出點(diǎn)P的軌跡方程.【詳解】因?yàn)镾KIPIF1<0中點(diǎn)為P,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)P在以C為圓心,4為半徑的圓上,其軌跡方程為SKIPIF1<0.故選:C.2.(2023秋·湖南永州·高三永州市第一中學(xué)校考階段練習(xí))在平面內(nèi),SKIPIF1<0是兩個(gè)定點(diǎn),SKIPIF1<0是動(dòng)點(diǎn),若SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡為(
)A.圓 B.橢圓 C.拋物線(xiàn) D.直線(xiàn)【答案】A【分析】由平行四邊形法則易得SKIPIF1<0,可知SKIPIF1<0,可判斷點(diǎn)SKIPIF1<0的軌跡為以線(xiàn)段SKIPIF1<0為直徑的圓.【詳解】設(shè)SKIPIF1<0為線(xiàn)段SKIPIF1<0的中點(diǎn),SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0或SKIPIF1<0時(shí)也滿(mǎn)足SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡為以線(xiàn)段SKIPIF1<0為直徑的圓.故選:A.3.(2023春·安徽阜陽(yáng)·高三安徽省臨泉第一中學(xué)校考專(zhuān)題練習(xí))平面直角坐標(biāo)系中,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則使SKIPIF1<0為等腰三角形的點(diǎn)SKIPIF1<0個(gè)數(shù)為(
)A.0 B.2 C.3 D.4【答案】D【分析】設(shè)SKIPIF1<0,根據(jù)SKIPIF1<0可得動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為圓SKIPIF1<0,再結(jié)合SKIPIF1<0為等腰三角形分析即可求解.【詳解】設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0,記為圓SKIPIF1<0又SKIPIF1<0,SKIPIF1<0為等腰三角形,則有SKIPIF1<0或SKIPIF1<0.因?yàn)閳ASKIPIF1<0與圓SKIPIF1<0相交,故滿(mǎn)足SKIPIF1<0點(diǎn)SKIPIF1<0有2個(gè);因?yàn)閳ASKIPIF1<0與圓SKIPIF1<0相交,故滿(mǎn)足SKIPIF1<0點(diǎn)SKIPIF1<0有2個(gè),故使SKIPIF1<0為等腰三角形的點(diǎn)SKIPIF1<0共有4個(gè).故選:D.4.(2023·全國(guó)·高三專(zhuān)題練習(xí))古希臘幾何學(xué)家阿波羅尼斯證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)SKIPIF1<0的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿波羅尼斯圓.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】直接設(shè)SKIPIF1<0,根據(jù)兩點(diǎn)間距離公式SKIPIF1<0代入運(yùn)算整理.【詳解】∵SKIPIF1<0,即SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0故選:B.5.(2023·四川宜賓·四川省宜賓市第四中學(xué)校校考模擬預(yù)測(cè))已知圓SKIPIF1<0,圓SKIPIF1<0,過(guò)動(dòng)點(diǎn)P分別作圓SKIPIF1<0、圓SKIPIF1<0的切線(xiàn)PA,PB(A,B為切點(diǎn)),使得SKIPIF1<0,則動(dòng)點(diǎn)P的軌跡方程為(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由條件結(jié)合圓的切線(xiàn)性質(zhì)可得出SKIPIF1<0,結(jié)合兩點(diǎn)間的距離公式可得出答案.【詳解】由SKIPIF1<0得SKIPIF1<0.因?yàn)閮蓤A的半徑均為1,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.所以點(diǎn)P的軌跡方程為SKIPIF1<0.故選:D6.(2023秋·北京·高三北京市陳經(jīng)綸中學(xué)校考開(kāi)學(xué)考試)已知直線(xiàn)SKIPIF1<0,點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng),若直線(xiàn)SKIPIF1<0上存在點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由SKIPIF1<0求出點(diǎn)SKIPIF1<0的軌跡,由直線(xiàn)SKIPIF1<0與此軌跡存在公共點(diǎn)求出SKIPIF1<0的范圍作答.【詳解】依題意,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由已知得SKIPIF1<0,而點(diǎn)SKIPIF1<0既在直線(xiàn)SKIPIF1<0上,又在圓SKIPIF1<0上,因此直線(xiàn)SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn),又圓SKIPIF1<0的圓心為原點(diǎn),半徑為SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B7.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知圓SKIPIF1<0的直徑SKIPIF1<0,若平面內(nèi)一個(gè)動(dòng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的距離是它與點(diǎn)SKIPIF1<0距離的SKIPIF1<0倍,則SKIPIF1<0的面積的最大值為(
)A.64 B.12 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線(xiàn)為SKIPIF1<0軸,線(xiàn)段SKIPIF1<0的垂直平分線(xiàn)為SKIPIF1<0軸,建立如圖所示的平面直角坐標(biāo)系,設(shè)SKIPIF1<0,利用SKIPIF1<0求出點(diǎn)SKIPIF1<0的軌跡方程,再根據(jù)圓的知識(shí)可求出結(jié)果.【詳解】以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線(xiàn)為SKIPIF1<0軸,線(xiàn)段SKIPIF1<0的垂直平分線(xiàn)為SKIPIF1<0軸,建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓上,SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離的最大值為SKIPIF1<0,因此SKIPIF1<0的面積的最大值為SKIPIF1<0.
故選:D二、填空題8.(2023秋·湖南長(zhǎng)沙·高三長(zhǎng)郡中學(xué)校聯(lián)考階段練習(xí))已知圓SKIPIF1<0:SKIPIF1<0,過(guò)動(dòng)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線(xiàn)SKIPIF1<0(SKIPIF1<0為切點(diǎn)),使得SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為.【答案】SKIPIF1<0【分析】由勾股定理得SKIPIF1<0后列式求解【詳解】設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<09.(2023秋·云南昆明·高三昆明一中校考階段練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)P滿(mǎn)足SKIPIF1<0,則點(diǎn)P到點(diǎn)C距離的最大值為.【答案】10【分析】設(shè)SKIPIF1<0,根據(jù)題意求出點(diǎn)P的軌跡方程,然后利用圓的性質(zhì)求得答案.【詳解】設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.則點(diǎn)P的軌跡是以SKIPIF1<0為圓心,半徑等于4圓,∵SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0,故答案為:10.10.(2023春·云南紅河·高三開(kāi)遠(yuǎn)市第一中學(xué)校校考階段練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)M滿(mǎn)足SKIPIF1<0,則點(diǎn)M到直線(xiàn)SKIPIF1<0的距離可以是.(寫(xiě)出一個(gè)符合題意的整數(shù)值)【答案】0或1(只寫(xiě)一個(gè)即可)【分析】由題設(shè)知SKIPIF1<0的軌跡為SKIPIF1<0,根據(jù)圓心到SKIPIF1<0距離得到SKIPIF1<0到直線(xiàn)距離的范圍,即可寫(xiě)出一個(gè)值.【詳解】由題設(shè)知SKIPIF1<0,即SKIPIF1<0在以SKIPIF1<0為直徑的圓上,且圓心為SKIPIF1<0,半徑為SKIPIF1<0,所以SKIPIF1<0的軌跡為SKIPIF1<0,而SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,即直線(xiàn)過(guò)圓心,所以M到直線(xiàn)SKIPIF1<0的距離范圍SKIPIF1<0,所以點(diǎn)M到直線(xiàn)SKIPIF1<0的距離的整數(shù)值可以是0或1.故答案為:0或1(只寫(xiě)一個(gè)即可)11.(2023·全國(guó)·模擬預(yù)測(cè))已知O為坐標(biāo)原點(diǎn),M是拋物線(xiàn)SKIPIF1<0準(zhǔn)線(xiàn)上的一點(diǎn),點(diǎn)P在圓SKIPIF1<0上.若MP的中點(diǎn)在圓SKIPIF1<0上,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,由已知條件求點(diǎn)P軌跡方程,與圓SKIPIF1<0聯(lián)立方程組,求交點(diǎn)坐標(biāo),代入SKIPIF1<0中求取值范圍.【詳解】拋物線(xiàn)SKIPIF1<0的準(zhǔn)線(xiàn)方程為x=1,設(shè)SKIPIF1<0,SKIPIF1<0,MP的中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由題意,知SKIPIF1<0在圓SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0消去x可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由P在圓SKIPIF1<0上,可知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.綜上所述,SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<012.(2023·浙江溫州·樂(lè)清市知臨中學(xué)校考模擬預(yù)測(cè))點(diǎn)P圓SKIPIF1<0上,點(diǎn)SKIPIF1<0在直線(xiàn)SKIPIF1<0上,O坐標(biāo)原點(diǎn),且SKIPIF1<0,則點(diǎn)SKIPIF1<0的橫坐標(biāo)的取值范圍為.【答案】SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,由條件可得點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,由條件列不等式可求點(diǎn)Q的橫坐標(biāo)的取值范圍.【詳解】因?yàn)辄c(diǎn)SKIPIF1<0在直線(xiàn)SKIPIF1<0上,故設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,又點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,所以?xún)蓤A有交點(diǎn),又圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以點(diǎn)SKIPIF1<0的橫坐標(biāo)的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.13.(2023·四川成都·三模)已知SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0內(nèi)一點(diǎn),對(duì)圓O上任意一點(diǎn)P都有SKIPIF1<0為定值,則mn的值為.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為正常數(shù)),把SKIPIF1<0用SKIPIF1<0表示后整理即得圓SKIPIF1<0方程,由此可求得SKIPIF1<0,得出結(jié)論.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為正常數(shù)),顯然SKIPIF1<0,否則SKIPIF1<0點(diǎn)軌跡是線(xiàn)段SKIPIF1<0的中垂線(xiàn),SKIPIF1<0,整理得SKIPIF1<0,這就是圓SKIPIF1<0的方程,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型四直線(xiàn)與圓相交策略方法直線(xiàn)與圓的相交問(wèn)題(1)研究直線(xiàn)與圓的相交問(wèn)題,應(yīng)牢牢記住三長(zhǎng)關(guān)系,即半徑長(zhǎng)SKIPIF1<0、弦心距SKIPIF1<0和半徑SKIPIF1<0之間形成的數(shù)量關(guān)系SKIPIF1<0.(2)弦長(zhǎng)問(wèn)題=1\*GB3①利用垂徑定理:半徑SKIPIF1<0,圓心到直線(xiàn)的距離SKIPIF1<0,弦長(zhǎng)SKIPIF1<0具有的關(guān)系SKIPIF1<0,這也是求弦長(zhǎng)最常用的方法.=2\*GB3②利用交點(diǎn)坐標(biāo):若直線(xiàn)與圓的交點(diǎn)坐標(biāo)易求出,求出交點(diǎn)坐標(biāo)后,直接用兩點(diǎn)間的距離公式計(jì)算弦長(zhǎng).=3\*GB3③利用弦長(zhǎng)公式:設(shè)直線(xiàn)SKIPIF1<0,與圓的兩交點(diǎn)SKIPIF1<0,將直線(xiàn)方程代入圓的方程,消元后利用根與系數(shù)關(guān)系得弦長(zhǎng):SKIPIF1<0.【典例1】直線(xiàn)l:SKIPIF1<0截圓SKIPIF1<0所得的弦長(zhǎng)等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)給定條件,求出圓的圓心和半徑,再利用幾何法求出弦長(zhǎng)作答.【詳解】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離SKIPIF1<0,所以所求弦長(zhǎng)為SKIPIF1<0.故選:C
【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專(zhuān)題練習(xí))圓SKIPIF1<0與直線(xiàn)S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位聘用用工合同
- 廠(chǎng)房合同轉(zhuǎn)租協(xié)議模板范本
- 打印機(jī)買(mǎi)賣(mài)合同范本
- 個(gè)人二手房買(mǎi)賣(mài)合同范本
- 貨物運(yùn)輸服務(wù)框架合同范本
- 不銹鋼板材購(gòu)銷(xiāo)合同
- 設(shè)備安裝工程承包勞務(wù)合同
- 廈門(mén)分包合同范本
- 展覽場(chǎng)地租賃、服務(wù)合同
- 星載微波散射計(jì)遙感熱帶氣旋海面風(fēng)場(chǎng)的真實(shí)性檢驗(yàn)方法研究
- 最高法院示范文本發(fā)布版3.4民事起訴狀答辯狀示范文本
- 2024年英語(yǔ)高考全國(guó)各地完形填空試題及解析
- 2024至2030年中國(guó)餐飲管理及無(wú)線(xiàn)自助點(diǎn)單系統(tǒng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024年服裝門(mén)店批發(fā)管理系統(tǒng)軟件項(xiàng)目可行性研究報(bào)告
- 體育概論(第二版)課件第三章體育目的
- 《氓》教學(xué)設(shè)計(jì) 2023-2024學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)
- 化學(xué)元素周期表注音版
- T-GDASE 0042-2024 固定式液壓升降裝置安全技術(shù)規(guī)范
- 香港朗文4B單詞及句子
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第五章運(yùn)動(dòng)中的中樞控制
- 財(cái)務(wù)部規(guī)范化管理 流程圖
評(píng)論
0/150
提交評(píng)論