新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第07講 函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(原卷版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第07講 函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(原卷版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第07講 函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(原卷版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第07講 函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(原卷版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第07講 函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(原卷版)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第07講函數(shù)的基本性質(zhì)Ⅰ-單調(diào)性與最值(精講)題型目錄一覽①函數(shù)單調(diào)性的判斷與證明②求函數(shù)的單調(diào)區(qū)間③復(fù)合函數(shù)的單調(diào)性④函數(shù)單調(diào)性的應(yīng)用⑤函數(shù)的最值(值域)★【文末附錄-函數(shù)的單調(diào)性與最值思維導(dǎo)圖】一、知識點梳理一、知識點梳理1.函數(shù)的單調(diào)性

(1)增函數(shù):若對于定義域內(nèi)的某個區(qū)間上的任意兩個自變量、,當(dāng)時,都有,那么就說函數(shù)在區(qū)間上是增函數(shù);(2)減函數(shù):若對于定義域內(nèi)的某個區(qū)間上的任意兩個自變量、,當(dāng)時,都有,那么就說函數(shù)在區(qū)間上是減函數(shù).(3)【特別提醒】①單調(diào)區(qū)間只能用區(qū)間表示,不能用不等式或集合表示.②有多個單調(diào)區(qū)間應(yīng)分別寫,不能用符號“∪”連接,也不能用“或”連接,只能用“逗號”或“和”連接.2.函數(shù)的最值(1)最大值:一般地,設(shè)函數(shù)的定義域為,如果存在實數(shù)滿足:=1\*GB3①對于任意的,都有;=2\*GB3②存在,使得.那么,我們稱是函數(shù)的最大值.(2)最小值:一般地,設(shè)函數(shù)的定義域為,如果存在實數(shù)滿足:=1\*GB3①對于任意的,都有;=2\*GB3②存在,使得.那么,我們稱是函數(shù)的最小值.(3)函數(shù)最值存在的兩個結(jié)論①閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值.②開區(qū)間上的“單峰”函數(shù)一定存在最大(小)值.【常用結(jié)論】1.?x1,x2∈D(x1≠x2),SKIPIF1<0?f(x)在D上是增函數(shù);SKIPIF1<0?f(x)在D上是減函數(shù).2.對勾函數(shù)y=SKIPIF1<0(a>0)的增區(qū)間為(-∞,-SKIPIF1<0]和[SKIPIF1<0,+∞),減區(qū)間為[-SKIPIF1<0,0)和(0,SKIPIF1<0].3.當(dāng)f(x),g(x)都是增(減)函數(shù)時,f(x)+g(x)是增(減)函數(shù).4.若k>0,則kf(x)與f(x)單調(diào)性相同;若k<0,則kf(x)與f(x)的單調(diào)性相反.5.函數(shù)y=f(x)在公共定義域內(nèi)與y=SKIPIF1<0的單調(diào)性相反.6.復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與函數(shù)y=f(u)和u=g(x)的單調(diào)性關(guān)系是“同增異減”.二、題型分類精講二、題型分類精講題型一函數(shù)單調(diào)性的判斷與證明策略方法1.定義法證明函數(shù)單調(diào)性的步驟2.判斷函數(shù)單調(diào)性的四種方法(1)圖象法;(2)性質(zhì)法;(3)導(dǎo)數(shù)法;(4)定義法.3.證明函數(shù)單調(diào)性的兩種方法(1)定義法;(2)導(dǎo)數(shù)法.【典例1】設(shè)函數(shù)SKIPIF1<0,指出SKIPIF1<0在SKIPIF1<0上的單調(diào)性,并證明你的結(jié)論.【題型訓(xùn)練】一、單選題1.設(shè)函數(shù)SKIPIF1<0滿足:對任意的SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,已知SKIPIF1<0為SKIPIF1<0上的減函數(shù),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件SKIPIF1<0二、填空題3.若SKIPIF1<0,則函數(shù)在SKIPIF1<0上的值域是______________.4.對于函數(shù)SKIPIF1<0定義域內(nèi)的任意SKIPIF1<0且SKIPIF1<0,給出下列結(jié)論:(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0其中正確結(jié)論為:__.三、解答題5.根據(jù)定義證明函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.6.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)判斷并證明函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性.7.設(shè)SKIPIF1<0對任意的SKIPIF1<0有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.(1)求證SKIPIF1<0是SKIPIF1<0上的減函數(shù);(2)若SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0上的最大值與最小值.題型二求函數(shù)的單調(diào)區(qū)間策略方法求復(fù)合函數(shù)單調(diào)區(qū)間的一般步驟(1)求函數(shù)的定義域(定義域先行).(2)求簡單函數(shù)的單調(diào)區(qū)間.(3)求復(fù)合函數(shù)的單調(diào)區(qū)間,其依據(jù)是“同增異減”.【典例1】已知函數(shù)SKIPIF1<0(1)畫出函數(shù)圖象(2)結(jié)合圖象寫出函數(shù)的單調(diào)增區(qū)間和的單調(diào)減區(qū)間.【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0,SKIPIF1<0的單調(diào)減區(qū)間為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是(

)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<03.如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),且函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),那么稱函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的“可變函數(shù)”,區(qū)間SKIPIF1<0叫做“可變區(qū)間”.若函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的“可變函數(shù)”,則“可變區(qū)間”SKIPIF1<0為(

)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、填空題4.函數(shù)SKIPIF1<0的單調(diào)減區(qū)間為___________.5.函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是___________.三、解答題6.已知二次函數(shù)SKIPIF1<0的最小值為1,且滿足SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在冪函數(shù)SKIPIF1<0的圖像上.(1)求SKIPIF1<0和SKIPIF1<0的解析式;(2)定義函數(shù)SKIPIF1<0試畫出函數(shù)SKIPIF1<0的圖象,并求函數(shù)SKIPIF1<0的定義域、值域和單調(diào)區(qū)間.7.已知函數(shù)SKIPIF1<0.(其中SKIPIF1<0)(1)求函數(shù)SKIPIF1<0的單調(diào)增區(qū)間;(2)若對任意SKIPIF1<0,使得SKIPIF1<0恒成立,求實數(shù)a的取值范圍.8.已知函數(shù)SKIPIF1<0(a為正常數(shù)),且函數(shù)SKIPIF1<0與SKIPIF1<0的圖象在y軸上的截距相等.(1)求a的值;(2)求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間;題型三復(fù)合函數(shù)的單調(diào)性策略方法集合運算三步驟【典例1】函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知函數(shù)SKIPIF1<0則SKIPIF1<0的大致圖像是(

)A.B.C. D.二、填空題4.函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是____________.5.已知SKIPIF1<0在SKIPIF1<0上是嚴(yán)格減函數(shù),則實數(shù)a的取值范圍是______.6.已知函數(shù)SKIPIF1<0且SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則實數(shù)a的取值范圍是___________.三、解答題7.已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求常數(shù)SKIPIF1<0的值;(2)判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性.8.已知函數(shù)SKIPIF1<0(1)若SKIPIF1<0,求SKIPIF1<0的定義域.(2)若函數(shù)在區(qū)間SKIPIF1<0上是減函數(shù),求實數(shù)a的取值范圍.題型四函數(shù)單調(diào)性的應(yīng)用策略方法1.比較函數(shù)值大小的解題思路比較函數(shù)值的大小時,若自變量的值不在同一個單調(diào)區(qū)間內(nèi),要利用其函數(shù)性質(zhì),轉(zhuǎn)化到同一個單調(diào)區(qū)間內(nèi)進行比較,對于選擇題、填空題能數(shù)形結(jié)合的盡量用圖象法求解.2.求解含“f”的函數(shù)不等式的解題思路先利用函數(shù)的相關(guān)性質(zhì)將不等式轉(zhuǎn)化為f(g(x))>f(h(x))的形式,再根據(jù)函數(shù)的單調(diào)性去掉“f”,得到一般的不等式g(x)>h(x)(或g(x)<h(x)).此時要特別注意函數(shù)的定義域.3.利用單調(diào)性求參數(shù)的范圍(或值)的策略(1)視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù).(2)解決分段函數(shù)的單調(diào)性問題,要注意上、下段端點函數(shù)值的大小關(guān)系.【典例1】已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào),則實數(shù)k的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上單調(diào)遞增”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.已知函數(shù)SKIPIF1<0滿足對任意SKIPIF1<0,當(dāng)SKIPIF1<0時都有SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的減函數(shù),若SKIPIF1<0,則實數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知函數(shù)f(x)的圖象關(guān)于y軸對稱,且f(x)在(-∞,0]上單調(diào)遞減,則滿足SKIPIF1<0的實數(shù)x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知偶函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且對于任意SKIPIF1<0均有SKIPIF1<0成立,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<09.已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題10.已知函數(shù)SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上都是減函數(shù),那么SKIPIF1<0__________.11.已知函數(shù)SKIPIF1<0,在SKIPIF1<0為單調(diào)函數(shù),則實數(shù)a的取值范圍為______.12.已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是_________.13.奇函數(shù)f(x)是定義域為(-1,1)上的減函數(shù),且f(2a-1)+f(a-1)>0,則a的取值范圍是________.三、解答題14.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為常數(shù).(1)該函數(shù)在SKIPIF1<0嚴(yán)格單調(diào),求SKIPIF1<0的取值范圍;(2)若對任意的SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍;15.設(shè)SKIPIF1<0,其中SKIPIF1<0.(1)若函數(shù)SKIPIF1<0是奇函數(shù),求SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上是嚴(yán)格減函數(shù),求SKIPIF1<0的取值范圍.16.已知函數(shù)SKIPIF1<0,且SKIPIF1<0為奇函數(shù).(1)判斷函數(shù)SKIPIF1<0的單調(diào)性并證明;(2)解不等式:SKIPIF1<0.題型五函數(shù)的最值(值域)策略方法求函數(shù)最值的五種常用方法【典例1】已知二次函數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域.【典例2】函數(shù)SKIPIF1<0在SKIPIF1<0時有最大值為SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】已知SKIPIF1<0為正的常數(shù),若不等式SKIPIF1<0對一切非負實數(shù)SKIPIF1<0恒成立,則SKIPIF1<0的最大值為________.【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.3 D.以上都不對2.已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為28,則實數(shù)k的值可以是(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論