新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第11講 對數(shù)與對數(shù)函數(shù)(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第11講 對數(shù)與對數(shù)函數(shù)(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第11講 對數(shù)與對數(shù)函數(shù)(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第11講 對數(shù)與對數(shù)函數(shù)(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第11講 對數(shù)與對數(shù)函數(shù)(含解析)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第11講對數(shù)與對數(shù)函數(shù)(精講)題型目錄一覽①對數(shù)式的化簡與求值②對數(shù)函數(shù)的圖像與性質(zhì)③解對數(shù)方程與不等式④對數(shù)函數(shù)的綜合應(yīng)用★【文末附錄-對數(shù)運(yùn)算與對數(shù)函數(shù)思維導(dǎo)圖】一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理1.對數(shù)式的運(yùn)算(1)對數(shù)的定義:一般地,如果SKIPIF1<0且SKIPIF1<0,那么數(shù)SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對數(shù),記作SKIPIF1<0,讀作以SKIPIF1<0為底SKIPIF1<0的對數(shù),其中SKIPIF1<0叫做對數(shù)的底數(shù),SKIPIF1<0叫做真數(shù).(2)常見對數(shù):①一般對數(shù):以SKIPIF1<0且SKIPIF1<0為底,記為SKIPIF1<0,讀作以SKIPIF1<0為底SKIPIF1<0的對數(shù);②常用對數(shù):以SKIPIF1<0為底,記為SKIPIF1<0;③自然對數(shù):以SKIPIF1<0為底,記為SKIPIF1<0;(3)對數(shù)的性質(zhì)和運(yùn)算法則:①SKIPIF1<0;SKIPIF1<0;其中SKIPIF1<0且SKIPIF1<0;②SKIPIF1<0(其中SKIPIF1<0且SKIPIF1<0,SKIPIF1<0);③對數(shù)換底公式:SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0;⑥SKIPIF1<0,SKIPIF1<0;⑦SKIPIF1<0和SKIPIF1<0;⑧SKIPIF1<0;2.對數(shù)函數(shù)的定義及圖像(1)對數(shù)函數(shù)的定義:函數(shù)SKIPIF1<0SKIPIF1<0且SKIPIF1<0叫做對數(shù)函數(shù).對數(shù)函數(shù)的圖象SKIPIF1<0SKIPIF1<0圖象性質(zhì)定義域:SKIPIF1<0值域:SKIPIF1<0過定點(diǎn)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上增函數(shù)在SKIPIF1<0上是減函數(shù)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【常用結(jié)論】在同一坐標(biāo)系內(nèi),當(dāng)SKIPIF1<0時(shí),隨SKIPIF1<0的增大,對數(shù)函數(shù)的圖象愈靠近SKIPIF1<0軸;當(dāng)SKIPIF1<0時(shí),對數(shù)函數(shù)的圖象隨SKIPIF1<0的增大而遠(yuǎn)離SKIPIF1<0軸.(見下圖)二、題型分類精講二、題型分類精講刷真題明導(dǎo)向刷真題明導(dǎo)向一、單選題1.(2020·山東·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的定義域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意得到SKIPIF1<0,再解不等式組即可.【詳解】由題知:SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0.所以函數(shù)定義域?yàn)镾KIPIF1<0.故選:B2.(2022·天津·統(tǒng)考高考真題)化簡SKIPIF1<0的值為(

)A.1 B.2 C.4 D.6【答案】B【分析】根據(jù)對數(shù)的性質(zhì)可求代數(shù)式的值.【詳解】原式SKIPIF1<0SKIPIF1<0,故選:B3.(2021·天津·統(tǒng)考高考真題)若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】C【分析】由已知表示出SKIPIF1<0,再由換底公式可求.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.4.(2021·全國·高考真題)青少年視力是社會(huì)普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足SKIPIF1<0.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(

)(SKIPIF1<0)A.1.5 B.1.2 C.0.8 D.0.6【答案】C【分析】根據(jù)SKIPIF1<0關(guān)系,當(dāng)SKIPIF1<0時(shí),求出SKIPIF1<0,再用指數(shù)表示SKIPIF1<0,即可求解.【詳解】由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.故選:C.5.(2020·全國·統(tǒng)考高考真題)Logistic模型是常用數(shù)學(xué)模型之一,可應(yīng)用于流行病學(xué)領(lǐng)域.有學(xué)者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計(jì)確診病例數(shù)I(t)(t的單位:天)的Logistic模型:SKIPIF1<0,其中K為最大確診病例數(shù).當(dāng)I(SKIPIF1<0)=0.95K時(shí),標(biāo)志著已初步遏制疫情,則SKIPIF1<0約為(

)(ln19≈3)A.60 B.63 C.66 D.69【答案】C【分析】將SKIPIF1<0代入函數(shù)SKIPIF1<0結(jié)合SKIPIF1<0求得SKIPIF1<0即可得解.【詳解】SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故選:C.【點(diǎn)睛】本題考查對數(shù)的運(yùn)算,考查指數(shù)與對數(shù)的互化,考查計(jì)算能力,屬于中等題.6.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先求出SKIPIF1<0的定義域,然后求出SKIPIF1<0的單調(diào)遞增區(qū)間即可.【詳解】由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0,故選:D7.(2021·天津·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的圖像大致為(

)A. B.C. D.【答案】B【分析】由函數(shù)為偶函數(shù)可排除AC,再由當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,排除D,即可得解.【詳解】設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,關(guān)于原點(diǎn)對稱,又SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),排除AC;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,排除D.故選:B.8.(2022·北京·統(tǒng)考高考真題)在北京冬奧會(huì)上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是SKIPIF1<0.下列結(jié)論中正確的是(

)A.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于液態(tài)B.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于氣態(tài)C.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于超臨界狀態(tài)D.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),二氧化碳處于超臨界狀態(tài)【答案】D【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系圖可得正確的選項(xiàng).【詳解】當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)二氧化碳處于固態(tài),故A錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)二氧化碳處于液態(tài),故B錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0與4非常接近,故此時(shí)二氧化碳處于固態(tài),對應(yīng)的是非超臨界狀態(tài),故C錯(cuò)誤.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),因SKIPIF1<0,故此時(shí)二氧化碳處于超臨界狀態(tài),故D正確.故選:D9.(2021·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)求出SKIPIF1<0的范圍即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.10.(2022·天津·統(tǒng)考高考真題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用冪函數(shù)、對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0.故答案為:C.11.(2020·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分別將SKIPIF1<0,SKIPIF1<0改寫為SKIPIF1<0,SKIPIF1<0,再利用單調(diào)性比較即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A.【點(diǎn)晴】本題考查對數(shù)式大小的比較,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.12.(2021·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用對數(shù)的運(yùn)算和對數(shù)函數(shù)的單調(diào)性不難對a,b的大小作出判定,對于a與c,b與c的大小關(guān)系,將0.01換成x,分別構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)分析其在0的右側(cè)包括0.01的較小范圍內(nèi)的單調(diào)性,結(jié)合f(0)=0,g(0)=0即可得出a與c,b與c的大小關(guān)系.【詳解】[方法一]:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;下面比較SKIPIF1<0與SKIPIF1<0的大小關(guān)系.記SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0所以當(dāng)0<x<2時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,在x>0時(shí),SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在[0,+∞)上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,即b<c;綜上,SKIPIF1<0,故選:B.[方法二]:令SKIPIF1<0SKIPIF1<0,即函數(shù)SKIPIF1<0在(1,+∞)上單調(diào)遞減SKIPIF1<0令SKIPIF1<0SKIPIF1<0,即函數(shù)SKIPIF1<0在(1,3)上單調(diào)遞增SKIPIF1<0綜上,SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查比較大小問題,難度較大,關(guān)鍵難點(diǎn)是將各個(gè)值中的共同的量用變量替換,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究相應(yīng)函數(shù)的單調(diào)性,進(jìn)而比較大小,這樣的問題,憑借近似估計(jì)計(jì)算往往是無法解決的.二、填空題13.(2020·北京·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的定義域是____________.【答案】SKIPIF1<0【分析】根據(jù)分母不為零、真數(shù)大于零列不等式組,解得結(jié)果.【詳解】由題意得SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查函數(shù)定義域,考查基本分析求解能力,屬基礎(chǔ)題.14.(2020·山東·統(tǒng)考高考真題)若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值是______.【答案】SKIPIF1<0【分析】根據(jù)對數(shù)運(yùn)算化簡為SKIPIF1<0,求解SKIPIF1<0的值.【詳解】SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0三、雙空題15.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【答案】SKIPIF1<0;SKIPIF1<0.【分析】根據(jù)奇函數(shù)的定義即可求出.【詳解】[方法一]:奇函數(shù)定義域的對稱性若SKIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0,不關(guān)于原點(diǎn)對稱SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關(guān)于原點(diǎn)對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0[方法三]:因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以其定義域關(guān)于原點(diǎn)對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域?yàn)镾KIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內(nèi)滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.題型一對數(shù)式的化簡與求值策略方法對數(shù)運(yùn)算的一般思路【典例1】解答下列問題:(1)用SKIPIF1<0表示SKIPIF1<0;(2)已知SKIPIF1<0,且SKIPIF1<0,求M的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)對數(shù)的運(yùn)算公式化簡即可;(2)由題意可得SKIPIF1<0,再根據(jù)換底公式可得SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,代入計(jì)算即可.【詳解】(1)解:因?yàn)镾KIPIF1<0;(2)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【題型訓(xùn)練】一、解答題1.(2023·全國·高三專題練習(xí))計(jì)算:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)對數(shù)的運(yùn)算法則,逐步計(jì)算,即可得出結(jié)果;(2)根據(jù)指數(shù)冪的運(yùn)算法則,以及對數(shù)的運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】(1)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.

(2)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.2.(2023·全國·高三專題練習(xí))(1)計(jì)算SKIPIF1<0;(2)已知SKIPIF1<0,求實(shí)數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【答案】(1)7;(2)109;(3)SKIPIF1<0.【解析】(1)利用對數(shù)恒等式和對數(shù)的運(yùn)算法則計(jì)算即可;(2)利用指對互化可得實(shí)數(shù)x的值;(3)先求出SKIPIF1<0,再利用換底公式結(jié)合對數(shù)的運(yùn)算法則求得結(jié)果.【詳解】(1)原式=SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以x=109;(3)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.二、單選題3.(2023秋·河南許昌·高三??计谀┤艉瘮?shù)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先求得SKIPIF1<0,再代入SKIPIF1<0的解析式即可得答案.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.4.(2023·新疆烏魯木齊·統(tǒng)考二模)已知SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.9 C.SKIPIF1<0 D.16【答案】C【分析】根據(jù)給定條件,利用對數(shù)運(yùn)算性質(zhì)、指數(shù)式與對數(shù)式互化,及指數(shù)運(yùn)算計(jì)算作答.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0.故選:C5.(2023·新疆·統(tǒng)考二模)人們用分貝(dB)來劃分聲音的等級,聲音的等級SKIPIF1<0(單位:dB)與聲音強(qiáng)度x(單位:SKIPIF1<0)滿足SKIPIF1<0.一般兩人正常交談時(shí),聲音的等級約為60dB,燃放煙花爆竹時(shí)聲音的等級約為150dB,那么燃放煙花爆竹時(shí)聲音強(qiáng)度約為兩人正常交談時(shí)聲音強(qiáng)度的(

)A.SKIPIF1<0倍 B.SKIPIF1<0倍 C.SKIPIF1<0倍 D.SKIPIF1<0倍【答案】C【分析】根據(jù)解析式分別求出對于聲音強(qiáng)度可得.【詳解】分別記正常交談和燃放煙花爆竹時(shí)的聲音強(qiáng)度分別為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.故選:C三、多選題6.(2023·重慶九龍坡·統(tǒng)考二模)若a,b,c都是正數(shù),且SKIPIF1<0則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】設(shè)SKIPIF1<0,得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再逐項(xiàng)判斷.【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則等號(hào)不成立,所以SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:BCD四、填空題7.(2023·上海黃浦·統(tǒng)考二模)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則實(shí)數(shù)a的值為____________.【答案】SKIPIF1<0【分析】根據(jù)給定條件,確定SKIPIF1<0,再借助奇函數(shù)性質(zhì)及給定值列式計(jì)算作答.【詳解】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)a的值為SKIPIF1<0.故答案為:SKIPIF1<08.(2023·全國·東北師大附中校聯(lián)考模擬預(yù)測)大氣壓強(qiáng)SKIPIF1<0,它的單位是“帕斯卡”(Pa,SKIPIF1<0),已知大氣壓強(qiáng)SKIPIF1<0隨高度SKIPIF1<0的變化規(guī)律是SKIPIF1<0,其中SKIPIF1<0是海平面大氣壓強(qiáng),SKIPIF1<0.當(dāng)?shù)馗呱缴弦惶幋髿鈮簭?qiáng)是海平面處大氣壓強(qiáng)的SKIPIF1<0,則高山上該處的海拔為___________米.(答案保留整數(shù),參考數(shù)據(jù)SKIPIF1<0)【答案】SKIPIF1<0【分析】根據(jù)題意解方程SKIPIF1<0即可得解.【詳解】由題意可知:SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型二對數(shù)函數(shù)的圖像與性質(zhì)策略方法1.利用對數(shù)函數(shù)的圖象解決的兩類問題及技巧(1)對一些可通過平移、對稱變換作出其圖象的對數(shù)型函數(shù),在求解其單調(diào)性(單調(diào)區(qū)間)、值域(最值)、零點(diǎn)時(shí),常利用數(shù)形結(jié)合思想.(2)一些對數(shù)型方程、不等式問題常轉(zhuǎn)化為相應(yīng)的函數(shù)圖象問題,利用數(shù)形結(jié)合法求解.2.比較對數(shù)值大小的常見類型及解題方法常見類型解題方法底數(shù)為同一常數(shù)可由對數(shù)函數(shù)的單調(diào)性直接進(jìn)行判斷底數(shù)為同一字母需對底數(shù)進(jìn)行分類討論底數(shù)不同,真數(shù)相同可以先用換底公式化為同底后,再進(jìn)行比較底數(shù)與真數(shù)都不同常借助1,0等中間量進(jìn)行比較【典例1】若對數(shù)SKIPIF1<0有意義,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由對數(shù)式有意義列不等式求SKIPIF1<0的取值范圍.【詳解】由對數(shù)SKIPIF1<0有意義可得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0,故選:C.【典例2】在同一平面直角坐標(biāo)系中,函數(shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0的圖象可能是(

)A. B.C. D.【答案】A【分析】假設(shè)指數(shù)函數(shù)圖象正確,結(jié)合對數(shù)函數(shù)單調(diào)性和SKIPIF1<0處函數(shù)值的正負(fù)可得到正確圖象.【詳解】對于AB,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0單調(diào)遞減,又SKIPIF1<0時(shí),SKIPIF1<0,A正確,B錯(cuò)誤;對于CD,若SKIPIF1<0圖象正確,則SKIPIF1<0,SKIPIF1<0單調(diào)遞增,CD錯(cuò)誤.故選:A.【典例3】已知直線SKIPIF1<0過函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的定點(diǎn)T,則SKIPIF1<0的最小值為(

)A.4 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0求出點(diǎn)SKIPIF1<0,再代入直線方程得到SKIPIF1<0,最后利用基本不等式里“1”的妙用求最值.【詳解】函數(shù)SKIPIF1<0過定點(diǎn)SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入直線SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)“=”成立.故選:C.【典例4】分別比較下列各組數(shù)的大?。?1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0與SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)對于同底數(shù)的對數(shù),利用函數(shù)單調(diào)性,對于不同底數(shù)的對數(shù),利用中間值法;(2)對數(shù)與指數(shù)之間的比較,利用中間值法;(3)對于真數(shù)相同的對數(shù),利用函數(shù)圖象.【詳解】(1)因?yàn)镾KIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.(2)因?yàn)镾KIPIF1<0在R上是增函數(shù),所以SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0.所以SKIPIF1<0.(3)方法一:函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如圖所示.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象在SKIPIF1<0的圖象的上方,所以SKIPIF1<0.方法二:因?yàn)镾KIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·湖南長沙·雅禮中學(xué)??家荒#┮阎蟂KIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0且SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)冪函數(shù)的性質(zhì)及對數(shù)函數(shù)的性質(zhì)分別求出集合SKIPIF1<0,SKIPIF1<0,再根據(jù)交集的定義求解即可.【詳解】解:由題意可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0且SKIPIF1<0.故選:C.2.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(a,b為常數(shù),其中SKIPIF1<0且SKIPIF1<0)的圖象如圖所示,則下列結(jié)論正確的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D【分析】由函數(shù)在定義域上單調(diào)遞增,可得SKIPIF1<0,排除A,C;代入SKIPIF1<0,得SKIPIF1<0,從而得答案.【詳解】解:由圖象可得函數(shù)在定義域上單調(diào)遞增,所以SKIPIF1<0,排除A,C;又因?yàn)楹瘮?shù)過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D3.(2023·全國·模擬預(yù)測)函數(shù)SKIPIF1<0的部分圖象為(

)A. B.C. D.【答案】A【分析】首先求出函數(shù)的定義域,即可判斷函數(shù)的奇偶性,再根據(jù)函數(shù)的取值情況或零點(diǎn),利用排除法判斷即可.【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,排除B,C;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,或當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,故排除D.故選:A.4.(2023·陜西榆林·統(tǒng)考二模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】引入中間值,SKIPIF1<0與1比較大小,SKIPIF1<0與0比較大小即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:B.5.(2023·北京·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)對數(shù)函數(shù)的單調(diào)性即可比較SKIPIF1<0,由指數(shù)的性質(zhì)即可求解SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故選:A6.(2023·福建莆田·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】取中間值SKIPIF1<0,根據(jù)指、對數(shù)運(yùn)算估算范圍,進(jìn)而比較大小.【詳解】因?yàn)镾KIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A.7.(2023·河北承德·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】構(gòu)造函數(shù)SKIPIF1<0,利用單調(diào)性得SKIPIF1<0,進(jìn)而根據(jù)指對數(shù)的運(yùn)算性質(zhì)即可比較.【詳解】令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取極小值也是最小值,故SKIPIF1<0,因此SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,進(jìn)而SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0,故選:D【點(diǎn)睛】比較值的大小,是對函數(shù)性質(zhì)綜合運(yùn)用的考查.一般常采用以下方法:利用指對冪函數(shù)的單調(diào)性比較大小,構(gòu)造函數(shù),利用導(dǎo)數(shù)求解單調(diào)性比較大小,利用不等式的性質(zhì)以及基本不等式,進(jìn)行放縮比較.二、多選題8.(2023·全國·高三專題練習(xí))若SKIPIF1<0,則下列關(guān)系成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此有SKIPIF1<0,所以選項(xiàng)A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以選項(xiàng)B正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以選項(xiàng)C不正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此有SKIPIF1<0,所以選項(xiàng)D正確,故選:ABD【點(diǎn)睛】關(guān)鍵點(diǎn)睛:判斷底數(shù)與1的大小關(guān)系,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性是解題的關(guān)鍵.三、填空題9.(2023·全國·高三專題練習(xí))SKIPIF1<0的定義域?yàn)開______________【答案】SKIPIF1<0【分析】根據(jù)解析式,求出使解析式有意義的自變量的范圍,即可得出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<010.(2023秋·江西鷹潭·高三貴溪市實(shí)驗(yàn)中學(xué)??茧A段練習(xí))已知SKIPIF1<0且SKIPIF1<0,若函數(shù)SKIPIF1<0與SKIPIF1<0的圖象經(jīng)過同一個(gè)定點(diǎn),則SKIPIF1<0__________.【答案】1【分析】由SKIPIF1<0可得出函數(shù)SKIPIF1<0所過定點(diǎn),再由SKIPIF1<0可得出SKIPIF1<0的值,得出答案.【詳解】函數(shù)SKIPIF1<0的圖象經(jīng)過定點(diǎn)SKIPIF1<0所以SKIPIF1<0的圖象也過定點(diǎn)SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0故答案為:111.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0SKIPIF1<0的最小值為________.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用換元法,結(jié)合對數(shù)函數(shù)的運(yùn)算法則和二次函數(shù)的性質(zhì)即可得出結(jié)論.【詳解】顯然SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,

令SKIPIF1<0,∵x∈SKIPIF1<0,∴t∈[-1,2],則SKIPIF1<0,當(dāng)且僅當(dāng)t=-SKIPIF1<0即x=SKIPIF1<0時(shí),有SKIPIF1<0.故答案為:SKIPIF1<0四、解答題12.(2023秋·山東濰坊·高三統(tǒng)考期中)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0和SKIPIF1<0,滿足SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的解析式;(2)若不等式SKIPIF1<0的解集為SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由題意SKIPIF1<0求SKIPIF1<0解析式,再由SKIPIF1<0求參數(shù)a,即可得解析式;(2)由(1)及題設(shè)得SKIPIF1<0,結(jié)合解集列方程組求m、a,即可得結(jié)果.【詳解】(1)由題意知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.所以函數(shù)SKIPIF1<0的解析式SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0,由題意知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.題型三解對數(shù)方程與不等式策略方法求解對數(shù)不等式的兩種類型及方法類型方法logax>logab借助y=logax的單調(diào)性求解,如果a的取值不確定,需分a>1與0<a<1兩種情況討論logax>b需先將b化為以a為底的對數(shù)式的形式,再借助y=logax的單調(diào)性求解【典例1】(1)當(dāng)SKIPIF1<0時(shí),求實(shí)數(shù)x的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),求實(shí)數(shù)x的取值范圍;(3)當(dāng)SKIPIF1<0恒取正值時(shí),求實(shí)數(shù)x的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)由增函數(shù)性質(zhì)去“SKIPIF1<0”解不等式即可;(2)由減函數(shù)性質(zhì)去“SKIPIF1<0”解不等式即可;(3)分類討論底數(shù),由函數(shù)單調(diào)性去“SKIPIF1<0”解不等式即可.【詳解】(1)SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0為增函數(shù),故SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0為減函數(shù),故SKIPIF1<0,解得SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0為增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0;若SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,綜上所述,SKIPIF1<0【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))方程SKIPIF1<0的解是(

)A.1 B.2 C.e D.3【答案】D【分析】利用指數(shù)與對數(shù)的轉(zhuǎn)化即可得到結(jié)果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:D.2.(2023·天津河西·天津市新華中學(xué)校考模擬預(yù)測)已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】可解出集合SKIPIF1<0,SKIPIF1<0,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】集合SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;SKIPIF1<0;則SKIPIF1<0SKIPIF1<0.故選:C3.(2023·安徽淮北·統(tǒng)考二模)已知集合SKIPIF1<0,則下列命題錯(cuò)誤的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出集合SKIPIF1<0,由集合間的關(guān)系對選項(xiàng)一一判斷即可得出答案.【詳解】SKIPIF1<0,對于A,SKIPIF1<0,故A正確;對于B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B正確;對于C,SKIPIF1<0,故C正確;對于D,SKIPIF1<0,故D不正確.故選:D.4.(2023·全國·模擬預(yù)測)已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.1 C.2 D.4【答案】C【分析】先根據(jù)對數(shù)的運(yùn)算得SKIPIF1<0,再利用基本不等式求解.【詳解】由正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),故選:C二、填空題5.(2023·陜西咸陽·??家荒#┮阎瘮?shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】由題意結(jié)合函數(shù)的解析式分類討論求解不等式的解集即可.【詳解】解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,綜上,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<06.(2023·全國·高三專題練習(xí))設(shè)命題SKIPIF1<0,命題SKIPIF1<0.若q是p的必要不充分條件,則實(shí)數(shù)m的取值范圍是______.【答案】SKIPIF1<0【分析】化簡命題SKIPIF1<0和SKIPIF1<0,利用真子集關(guān)系列式可求出結(jié)果.【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,因?yàn)閝是p的必要不充分條件,所以SKIPIF1<0是SKIPIF1<0的真子集,所以SKIPIF1<0且兩個(gè)等號(hào)不同時(shí)取,解得SKIPIF1<0.故答案為:SKIPIF1<07.(2023·上?!そy(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是__________.【答案】SKIPIF1<0【分析】根據(jù)函數(shù)的單調(diào)性,以及SKIPIF1<0即可求解.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上為增函數(shù),SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),又SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論