新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第24練 平面向量的數(shù)量積及其應(yīng)用(含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第24練 平面向量的數(shù)量積及其應(yīng)用(含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第24練 平面向量的數(shù)量積及其應(yīng)用(含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第24練 平面向量的數(shù)量積及其應(yīng)用(含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第24練 平面向量的數(shù)量積及其應(yīng)用(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第24練平面向量的數(shù)量積及其應(yīng)用(精練)刷真題明導(dǎo)向刷真題明導(dǎo)向一、單選題1.(2022·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.4 D.5【答案】D【分析】先求得SKIPIF1<0,然后求得SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:D2.(2023·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用平面向量模與數(shù)量積的坐標(biāo)表示分別求得SKIPIF1<0,從而利用平面向量余弦的運(yùn)算公式即可得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:B.3.(2022·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】C【分析】根據(jù)給定模長(zhǎng),利用向量的數(shù)量積運(yùn)算求解即可.【詳解】解:∵SKIPIF1<0,又∵SKIPIF1<0∴9SKIPIF1<0,∴SKIPIF1<0故選:C.4.(2023·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)向量的坐標(biāo)運(yùn)算求出SKIPIF1<0,SKIPIF1<0,再根據(jù)向量垂直的坐標(biāo)表示即可求出.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0.故選:D.5.(2022·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.6【答案】C【分析】利用向量的運(yùn)算和向量的夾角的余弦公式的坐標(biāo)形式化簡(jiǎn)即可求得【詳解】解:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:C6.(2023·北京·統(tǒng)考高考真題)已知向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】B【分析】利用平面向量數(shù)量積的運(yùn)算律,數(shù)量積的坐標(biāo)表示求解作答.【詳解】向量SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0.故選:B7.(2021·浙江·統(tǒng)考高考真題)已知非零向量SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件【答案】B【分析】考慮兩者之間的推出關(guān)系后可得兩者之間的條件關(guān)系.【詳解】如圖所示,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0垂直,,所以成立,此時(shí)SKIPIF1<0,∴不是SKIPIF1<0的充分條件,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴成立,∴是SKIPIF1<0的必要條件,綜上,“”是“”的必要不充分條件故選:B.8.(2023·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】作出圖形,根據(jù)幾何意義求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.如圖,設(shè)SKIPIF1<0,由題知,SKIPIF1<0是等腰直角三角形,AB邊上的高SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:D.9.(2022·北京·統(tǒng)考高考真題)在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】依題意建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,表示出SKIPIF1<0,SKIPIF1<0,根據(jù)數(shù)量積的坐標(biāo)表示、輔助角公式及正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】解:依題意如圖建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動(dòng),設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:D二、填空題10.(2022·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0______________.【答案】SKIPIF1<0【分析】直接由向量垂直的坐標(biāo)表示求解即可.【詳解】由題意知:SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.11.(2021·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】根據(jù)平面向量數(shù)量積的坐標(biāo)表示以及向量的線性運(yùn)算列出方程,即可解出.【詳解】因?yàn)镾KIPIF1<0,所以由SKIPIF1<0可得,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題解題關(guān)鍵是熟記平面向量數(shù)量積的坐標(biāo)表示,設(shè)SKIPIF1<0,SKIPIF1<0,注意與平面向量平行的坐標(biāo)表示區(qū)分.12.(2021·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0.【分析】利用向量的坐標(biāo)運(yùn)算法則求得向量SKIPIF1<0的坐標(biāo),利用向量的數(shù)量積為零求得SKIPIF1<0的值【詳解】SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,平面向量垂直的條件,屬基礎(chǔ)題,利用平面向量SKIPIF1<0垂直的充分必要條件是其數(shù)量積SKIPIF1<0.13.(2021·全國(guó)·高考真題)若向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】根據(jù)題目條件,利用SKIPIF1<0模的平方可以得出答案【詳解】∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0.故答案為:SKIPIF1<0.14.(2022·全國(guó)·統(tǒng)考高考真題)設(shè)向量SKIPIF1<0,SKIPIF1<0的夾角的余弦值為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,依題意可得SKIPIF1<0,再根據(jù)數(shù)量積的定義求出SKIPIF1<0,最后根據(jù)數(shù)量積的運(yùn)算律計(jì)算可得.【詳解】解:設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0的夾角的余弦值為SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】法一:根據(jù)題意結(jié)合向量數(shù)量積的運(yùn)算律運(yùn)算求解;法二:換元令SKIPIF1<0,結(jié)合數(shù)量積的運(yùn)算律運(yùn)算求解.【詳解】法一:因?yàn)镾KIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.法二:設(shè)SKIPIF1<0,則SKIPIF1<0,由題意可得:SKIPIF1<0,則SKIPIF1<0,整理得:SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.16.(2021·全國(guó)·統(tǒng)考高考真題)已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0_______.【答案】SKIPIF1<0【分析】由已知可得SKIPIF1<0,展開(kāi)化簡(jiǎn)后可得結(jié)果.【詳解】由已知可得SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.三、雙空題17.(2021·天津·統(tǒng)考高考真題)在邊長(zhǎng)為1的等邊三角形ABC中,D為線段BC上的動(dòng)點(diǎn),SKIPIF1<0且交AB于點(diǎn)E.SKIPIF1<0且交AC于點(diǎn)F,則SKIPIF1<0的值為_(kāi)___________;SKIPIF1<0的最小值為_(kāi)___________.【答案】1SKIPIF1<0【分析】設(shè)SKIPIF1<0,由SKIPIF1<0可求出;將SKIPIF1<0化為關(guān)于SKIPIF1<0的關(guān)系式即可求出最值.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為邊長(zhǎng)為1的等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0為邊長(zhǎng)為SKIPIF1<0的等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:1;SKIPIF1<0.【A組

在基礎(chǔ)中考查功底】一、單選題1.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.10【答案】C【分析】根據(jù)共線先求出SKIPIF1<0,根據(jù)向量的模的坐標(biāo)公式即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0.故選:C.2.(2023·河南·校聯(lián)考模擬預(yù)測(cè))設(shè)SKIPIF1<0都是單位向量,且SKIPIF1<0,則向量SKIPIF1<0的夾角等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)等式將SKIPIF1<0移到另一端,兩邊同時(shí)平方,由SKIPIF1<0都是單位向量可求出SKIPIF1<0的夾角.【詳解】由SKIPIF1<0,可知SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0的夾角為SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:C.3.(2023·江蘇蘇州·模擬預(yù)測(cè))已知向量SKIPIF1<0在向量SKIPIF1<0上的投影向量是SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)向量SKIPIF1<0在向量SKIPIF1<0上的投影向量求出SKIPIF1<0,代入SKIPIF1<0的定義式即可.【詳解】因?yàn)橄蛄縎KIPIF1<0在向量SKIPIF1<0上的投影向量是SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A.4.(2023·黑龍江哈爾濱·哈爾濱市第四中學(xué)校??寄M預(yù)測(cè))如圖,已知SKIPIF1<0的半徑為2,SKIPIF1<0,則SKIPIF1<0(

A.1 B.-2 C.2 D.SKIPIF1<0【答案】C【分析】判斷SKIPIF1<0形狀可得SKIPIF1<0,然后根據(jù)數(shù)量積定義直接求解即可.【詳解】由題知,SKIPIF1<0為正三角形,所以SKIPIF1<0,所以SKIPIF1<0.故選:C5.(2023·四川·校聯(lián)考模擬預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.5【答案】D【分析】依題意可得SKIPIF1<0,即可求出SKIPIF1<0的值,在求出SKIPIF1<0的坐標(biāo),從而求出其模.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.6.(2023·山東濰坊·三模)已知平面向量SKIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用模的公式可得到SKIPIF1<0,然后利用數(shù)量積的運(yùn)算律即可得到答案【詳解】由SKIPIF1<0可得SKIPIF1<0,因?yàn)槠矫嫦蛄縎KIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0,且SKIPIF1<0所以SKIPIF1<0故選:C7.(2023·人大附中??既#┮阎蛄縎KIPIF1<0,SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0=(

)A.6 B.20 C.SKIPIF1<0 D.5【答案】C【分析】運(yùn)用平面向量共線及向量的模的坐標(biāo)計(jì)算公式求解即可.【詳解】由題意知,SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C8.(2023·浙江·校聯(lián)考模擬預(yù)測(cè))已知單位向量SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)投影向量的計(jì)算公式求值即可.【詳解】因?yàn)閱挝幌蛄縎KIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,由投影向量計(jì)算公式可知SKIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0,即SKIPIF1<0故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.故選:D9.(2023·浙江寧波·鎮(zhèn)海中學(xué)??寄M預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0方向上的投影向量為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求出兩個(gè)向量的數(shù)量積,再根據(jù)公式可求投影向量.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,而向量SKIPIF1<0在向量SKIPIF1<0方向上的投影向量為SKIPIF1<0,故選:B.10.(2023春·海南·高三海南中學(xué)校考階段練習(xí))已知向量SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.12 D.72【答案】A【分析】運(yùn)用平面向量的數(shù)量積運(yùn)算可求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0,所以SKIPIF1<0.故選:A.11.(2023·重慶·校聯(lián)考三模)在△ABC中,SKIPIF1<0,SKIPIF1<0且點(diǎn)D滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)向量線性運(yùn)算和題干條件得到SKIPIF1<0,從而得到SKIPIF1<0.【詳解】由題意得SKIPIF1<0,平方得SKIPIF1<0,故SKIPIF1<0,因?yàn)辄c(diǎn)D滿足SKIPIF1<0,所以SKIPIF1<0,平方得SKIPIF1<0,故SKIPIF1<0.故選:D12.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.12 D.24【答案】C【分析】根據(jù)數(shù)量積的運(yùn)算律即可求解.【詳解】由SKIPIF1<0,所以SKIPIF1<0.故選:C.13.(2023·遼寧·校聯(lián)考二模)已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實(shí)數(shù)m的值為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】D【分析】先求得SKIPIF1<0的坐標(biāo),再由SKIPIF1<0求解.【詳解】解:因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:D14.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))若平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0與SKIPIF1<0的夾角為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用垂直的向量表示求出SKIPIF1<0的表達(dá)式,再利用向量夾角公式求解作答.【詳解】因?yàn)镾KIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0.故選:B15.(2023·甘肅·模擬預(yù)測(cè))平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.8【答案】A【分析】利用轉(zhuǎn)化基底的方法進(jìn)行平面向量數(shù)量積的運(yùn)算即可求解.【詳解】由題意知平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,故選:A.16.(2023·江西上饒·校聯(lián)考模擬預(yù)測(cè))在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0邊的中點(diǎn),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用向量SKIPIF1<0表示SKIPIF1<0,結(jié)合數(shù)量積的定義求SKIPIF1<0.【詳解】由已知SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.所以SKIPIF1<0.故選:A.17.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為()A.7 B.SKIPIF1<0C.7+4SKIPIF1<0 D.4SKIPIF1<0【答案】B【分析】由數(shù)量積的運(yùn)算公式求得SKIPIF1<0,化簡(jiǎn)SKIPIF1<0,結(jié)合基本不等式,即可求解.【詳解】因?yàn)橄蛄縎KIPIF1<0,若SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.二、多選題18.(2023·廣東梅州·大埔縣虎山中學(xué)校考模擬預(yù)測(cè))已知平面向量SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0B.SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0C.與SKIPIF1<0垂直的單位向量的坐標(biāo)為SKIPIF1<0D.若向量SKIPIF1<0與非零向量SKIPIF1<0共線,則SKIPIF1<0【答案】AD【分析】本題考查了平面向量的坐標(biāo)運(yùn)算,主要考查了兩向量的夾角、投影向量、向量的平行與垂直的基本知識(shí),一一驗(yàn)證即可.【詳解】由題意知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因此A正確;SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0,因此B錯(cuò)誤;與SKIPIF1<0垂直的單位向量的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,因此C錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0,若向量SKIPIF1<0與向量SKIPIF1<0共線,則SKIPIF1<0,解得SKIPIF1<0,因此D正確.故選:AD.19.(2023·廣東廣州·統(tǒng)考三模)已知向量SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0【答案】AC【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的數(shù)量積為SKIPIF1<0可得A正確;根據(jù)向量平行的坐標(biāo)表示可得B錯(cuò)誤;根據(jù)模長(zhǎng)公式可得C正確;求出投影向量可得D錯(cuò)誤.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故A正確;因?yàn)镾KIPIF1<0,故B錯(cuò)誤;SKIPIF1<0,SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0,故D錯(cuò)誤.故選:AC.20.(2023·湖南·校聯(lián)考二模)已知向量SKIPIF1<0,SKIPIF1<0//SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【分析】A選項(xiàng)根據(jù)向量的數(shù)量積運(yùn)算判斷;B選項(xiàng)根據(jù)模長(zhǎng)公式計(jì)算;C選項(xiàng)利用向量共線的關(guān)系結(jié)合模長(zhǎng)公式計(jì)算;D選項(xiàng)根據(jù)向量的加法進(jìn)行判斷.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則A正確;SKIPIF1<0,則B正確;因?yàn)镾KIPIF1<0//SKIPIF1<0,所以設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,故C錯(cuò)誤;SKIPIF1<0,故D錯(cuò)誤.故選:AB21.(2023·山東濱州·統(tǒng)考二模)已知向量SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0∥SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則向量SKIPIF1<0,SKIPIF1<0的夾角為鈍角【答案】BD【分析】由向量模的計(jì)算公式判斷A;由共線向量的坐標(biāo)運(yùn)算判斷B;由向量垂直時(shí)數(shù)量積為0判斷C;由向量的數(shù)量積判斷D.【詳解】解:對(duì)于A,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故A錯(cuò)誤;對(duì)于B,因?yàn)镾KIPIF1<0∥SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故B正確;對(duì)于C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又因?yàn)榇藭r(shí)SKIPIF1<0,SKIPIF1<0不共線,所以向量SKIPIF1<0,SKIPIF1<0的夾角為鈍角,故D正確.故選:BD.22.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】設(shè)SKIPIF1<0的坐標(biāo),利用向量模的坐標(biāo)公式及SKIPIF1<0關(guān)系,建立方程組解出來(lái)即可.【詳解】設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.故選:AC.23.(2023·全國(guó)·模擬預(yù)測(cè))有關(guān)平面向量的說(shuō)法,下列錯(cuò)誤的是(

)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0與SKIPIF1<0共線且模長(zhǎng)相等,則SKIPIF1<0C.若SKIPIF1<0且SKIPIF1<0與SKIPIF1<0方向相同,則SKIPIF1<0 D.SKIPIF1<0恒成立【答案】ABC【分析】取SKIPIF1<0,可判斷A選項(xiàng);利用平面向量的概念可判斷B選項(xiàng);利用向量不能比大小可判斷C選項(xiàng);利用平面向量數(shù)量積的運(yùn)算性質(zhì)可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),取SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0不一定共線,A錯(cuò);對(duì)于B選項(xiàng),若SKIPIF1<0與SKIPIF1<0共線且模長(zhǎng)相等,則SKIPIF1<0或SKIPIF1<0,B錯(cuò);對(duì)于C選項(xiàng),任何兩個(gè)向量不能比大小,C錯(cuò);對(duì)于D選項(xiàng),SKIPIF1<0恒成立,D對(duì).故選:ABC.三、填空題24.(2023·四川成都·樹德中學(xué)??寄M預(yù)測(cè))已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】利用向量共線的坐標(biāo)運(yùn)算即可求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0.25.(2023·四川巴中·南江中學(xué)??寄M預(yù)測(cè))已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】由數(shù)量積等于0并結(jié)合數(shù)量積的坐標(biāo)運(yùn)算公式即可求解.【詳解】由題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<026.(2023·河南濮陽(yáng)·濮陽(yáng)一高校考模擬預(yù)測(cè))若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)給定條件,求出SKIPIF1<0,再利用數(shù)量積的運(yùn)算律求解作答.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<027.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______【答案】SKIPIF1<0【分析】根據(jù)平面向量垂直的向量表示以及平面向量的夾角公式可求出結(jié)果.【詳解】由SKIPIF1<0可知SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<028.(2023·江西·統(tǒng)考模擬預(yù)測(cè))已知單位向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】將SKIPIF1<0兩邊平方,根據(jù)數(shù)量積的運(yùn)算律計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0為單位向量且滿足SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<029.(2023·全國(guó)·高三專題練習(xí))已知非零向量SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】9【分析】根據(jù)數(shù)量積的定義結(jié)合數(shù)量積的運(yùn)算律,即可求得答案.【詳解】由SKIPIF1<0及SKIPIF1<0,SKIPIF1<0夾角為SKIPIF1<0可知SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故答案為:930.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)SKIPIF1<0在SKIPIF1<0上的投影向量SKIPIF1<0即可求解.【詳解】設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影向量SKIPIF1<0.故答案為:SKIPIF1<0.31.(2023·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)校考模擬預(yù)測(cè))已知菱形SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】根據(jù)菱形對(duì)角線互相垂直,結(jié)合平面向量數(shù)量積公式求出答案.【詳解】設(shè)SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),SKIPIF1<0,由平面向量數(shù)量積的幾何意義知,SKIPIF1<0.故答案為:SKIPIF1<032.(2023·陜西西安·??寄M預(yù)測(cè))若平面四邊形SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則該四邊形一定是______.【答案】菱形【分析】根據(jù)向量相等可證明四邊形為平行四邊形,再由向量數(shù)量積為0知對(duì)角線互相垂直可知為菱形.【詳解】SKIPIF1<0,SKIPIF1<0,所以四邊形ABCD為平行四邊形,SKIPIF1<0,SKIPIF1<0,所以DB垂直AC,所以四邊形ABCD為菱形.故答案為:菱形.33.(2023·浙江溫州·統(tǒng)考三模)在平行四邊形SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0___________.【答案】4【分析】根據(jù)四邊形ABCD為平行四邊形可得SKIPIF1<0,然后由數(shù)量積的坐標(biāo)表示可解.【詳解】因?yàn)樗倪呅蜛BCD為平行四邊形,所以SKIPIF1<0又SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0故答案為:4【B組

在綜合中考查能力】一、單選題1.(2023·山西朔州·懷仁市第一中學(xué)校??寄M預(yù)測(cè))已知菱形SKIPIF1<0的邊長(zhǎng)為2,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.2 B.4 C.6 D.8【答案】D【分析】根據(jù)向量的數(shù)量積公式及運(yùn)算律,結(jié)合菱形圖形特征,計(jì)算求解可得.【詳解】由條件可知SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由余弦定理SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,菱形SKIPIF1<0的對(duì)角線互相垂直,則向量SKIPIF1<0與向量SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0.故選:D.2.(2023·河南鄭州·三模)若向量SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則向量SKIPIF1<0與向量SKIPIF1<0的夾角為(

)A.30° B.60° C.120° D.150°【答案】D【分析】已知式平方得SKIPIF1<0,平方求得SKIPIF1<0,兩種方法計(jì)算SKIPIF1<0后可得結(jié)論.【詳解】SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故選:D.3.(2023·湖北·校聯(lián)考三模)正SKIPIF1<0的邊長(zhǎng)為2,SKIPIF1<0,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0,表示出向量SKIPIF1<0,再利用向量基本運(yùn)算法則表示出向量SKIPIF1<0,再利用向量額數(shù)量積運(yùn)算即可.【詳解】設(shè)SKIPIF1<0,如圖所示:因?yàn)镾KIPIF1<0所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:C.4.(2023·全國(guó)·高三專題練習(xí))如圖所示,邊長(zhǎng)為2的正三角形ABC中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.-1 B.-2 C.1 D.2【答案】D【分析】由SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,然后利用數(shù)量積的運(yùn)算律和定義求解.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:D5.(2023·湖北武漢·統(tǒng)考三模)已知SKIPIF1<0,SKIPIF1<0為單位向量,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意結(jié)合數(shù)量積的定義分析可得SKIPIF1<0反向,進(jìn)而可得SKIPIF1<0,運(yùn)算求解即可.【詳解】由題意可得:SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0反向,可得SKIPIF1<0.故選:D.6.(2023春·安徽阜陽(yáng)·高三安徽省臨泉第一中學(xué)??紝n}練習(xí))SKIPIF1<0中,|SKIPIF1<0|=2|SKIPIF1<0|,則sinA的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由|SKIPIF1<0|=2|SKIPIF1<0|,兩邊SKIPIF1<0,整理得到SKIPIF1<0,結(jié)合基本不等式進(jìn)而得到SKIPIF1<0的最小值,再利用平方關(guān)系求解.【詳解】解:由|SKIPIF1<0|=2|SKIPIF1<0|,兩邊同時(shí)平方得SKIPIF1<0,展開(kāi)整理得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.又SKIPIF1<0且SKIPIF1<0時(shí),所以SKIPIF1<0取最大值SKIPIF1<0.故選:C7.(2023·四川成都·石室中學(xué)校考模擬預(yù)測(cè))若SKIPIF1<0,SKIPIF1<0均為單位向量,且SKIPIF1<0,則k的值可能是(

)A.-2 B.2 C.3 D.-3【答案】B【分析】?jī)蛇呁瑫r(shí)平方,得到SKIPIF1<0,余弦值只能在SKIPIF1<0判斷即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0均為單位向量,所以SKIPIF1<0,所以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論