2021-2022學(xué)年山西省孝義市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年山西省孝義市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年山西省孝義市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年山西省孝義市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年山西省孝義市高三下學(xué)期第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.2.已知,若,則等于()A.3 B.4 C.5 D.63.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.4.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.5.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.6.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.157.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.8.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.9.如圖是國家統(tǒng)計(jì)局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯(cuò)誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差10.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.11.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.12.點(diǎn)在曲線上,過作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項(xiàng)式系數(shù)之和為64,則展開式各項(xiàng)系數(shù)和為__________.14.二項(xiàng)式的展開式中項(xiàng)的系數(shù)為_____.15.已知等差數(shù)列的前n項(xiàng)和為Sn,若,則____.16.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.19.(12分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.20.(12分)在中,內(nèi)角的對(duì)邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.21.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.22.(10分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.2.C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)?,所以有,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.3.C【解析】

建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.4.D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.5.D【解析】

試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).6.B【解析】,∴,選B.7.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.8.B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒有原象,故可否定.故選B.9.D【解析】

ABD可通過統(tǒng)計(jì)圖直接分析得出結(jié)論,C可通過計(jì)算中位數(shù)判斷選項(xiàng)是否正確.【詳解】A.由統(tǒng)計(jì)圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計(jì)圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計(jì)圖可知:前年的入境游客萬人次相比于后年的波動(dòng)更大,所以對(duì)應(yīng)的方差更大,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表信息的讀取以及對(duì)中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計(jì)圖,分析出對(duì)應(yīng)的信息,對(duì)學(xué)生分析問題的能力有一定要求.10.D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由實(shí)部為求得值.【詳解】解:在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,,即.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.11.B【解析】

根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.12.C【解析】

設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由題意得展開式的二項(xiàng)式系數(shù)之和求出的值,然后再計(jì)算展開式各項(xiàng)系數(shù)的和.【詳解】由題意展開式的二項(xiàng)式系數(shù)之和為,即,故,令,則展開式各項(xiàng)系數(shù)的和為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)展開式的二項(xiàng)式系數(shù)和項(xiàng)的系數(shù)和問題,需要運(yùn)用定義加以區(qū)分,并能夠運(yùn)用公式和賦值法求解結(jié)果,需要掌握解題方法.14.15【解析】

由題得,,令,解得,代入可得展開式中含x6項(xiàng)的系數(shù).【詳解】由題得,,令,解得,所以二項(xiàng)式的展開式中項(xiàng)的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,考查了利用通項(xiàng)公式去求展開式中某項(xiàng)的系數(shù)問題.15.【解析】

由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的性質(zhì),相對(duì)不難.16.【解析】

根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:【點(diǎn)睛】本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)或;(2).【解析】

(1)通過討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識(shí)點(diǎn)有分類討論求絕對(duì)值不等式的解集,將零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡單題目.18.(1):,:;(2)【解析】

(1)根據(jù)點(diǎn)斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【點(diǎn)睛】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.19.(1)當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)【解析】試題分析:(1),分,討論,當(dāng)時(shí),對(duì),,當(dāng)時(shí),解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè),所以,設(shè),則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因?yàn)?,所以,?dāng)時(shí),對(duì),,所以在是減函數(shù),此時(shí)函數(shù)不存在極值,所以函數(shù)沒有極值點(diǎn);當(dāng)時(shí),,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時(shí),取得極小值為,函數(shù)有且僅有一個(gè)極小值點(diǎn),所以當(dāng)時(shí),沒有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè),所以,設(shè),則,且是增函數(shù),所以當(dāng)時(shí),,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當(dāng)時(shí),因?yàn)樵谑窃龊瘮?shù),因?yàn)?,,所以在上存在唯一零點(diǎn),當(dāng)時(shí),,在上單調(diào)遞減,從而,即,所以在上單調(diào)遞減,所以當(dāng)時(shí),,即.所以不等式在區(qū)間內(nèi)有解綜上所述,實(shí)數(shù)的取值范圍為.20.(1).(2)【解析】

(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點(diǎn)睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.21.(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.22.(1)見解析(2)【解析】

(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面.(2)取中點(diǎn)為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論