2022-2023學(xué)年重慶市實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高三上期末監(jiān)測(cè)試題含解析_第1頁(yè)
2022-2023學(xué)年重慶市實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高三上期末監(jiān)測(cè)試題含解析_第2頁(yè)
2022-2023學(xué)年重慶市實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高三上期末監(jiān)測(cè)試題含解析_第3頁(yè)
2022-2023學(xué)年重慶市實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高三上期末監(jiān)測(cè)試題含解析_第4頁(yè)
2022-2023學(xué)年重慶市實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高三上期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.2.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.3.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.4.近年來(lái),隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說(shuō)法:①可以估計(jì)使用主要聽音樂(lè)的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計(jì)不足的大學(xué)生使用主要玩游戲;③可以估計(jì)使用主要找人聊天的大學(xué)生超過(guò)總數(shù)的.其中正確的個(gè)數(shù)為()A. B. C. D.5.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或6.已知向量,,當(dāng)時(shí),()A. B. C. D.7.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有8.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.9.已知,函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則()A. B.C. D.10.已知數(shù)列的前項(xiàng)和為,且,,則()A. B. C. D.11.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.五行學(xué)說(shuō)是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬(wàn)物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開____________.14.函數(shù)過(guò)定點(diǎn)________.15.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(diǎn)(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?8.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).19.(12分)第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺(jué)垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考20.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.21.(12分)如圖在四邊形中,,,為中點(diǎn),.(1)求;(2)若,求面積的最大值.22.(10分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點(diǎn)個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.2、C【解析】

先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.3、B【解析】

設(shè)過(guò)點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.4、C【解析】

根據(jù)利用主要聽音樂(lè)的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計(jì)算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計(jì)算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂(lè)的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過(guò)的大學(xué)生使用主要玩游戲,所以②錯(cuò)誤;使用主要找人聊天的大學(xué)生人數(shù)為,因?yàn)?,所以③正確.故選:C.【點(diǎn)睛】本題考查統(tǒng)計(jì)中相關(guān)命題真假的判斷,計(jì)算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)6、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.7、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.8、A【解析】

構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡(jiǎn)不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時(shí),,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、C【解析】

當(dāng)時(shí),最多一個(gè)零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個(gè)零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個(gè)零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個(gè)零點(diǎn);根據(jù)題意函數(shù)恰有3個(gè)零點(diǎn)函數(shù)在上有一個(gè)零點(diǎn),在,上有2個(gè)零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類問(wèn)題,不少考生會(huì)一籌莫展.由于方程中涉及兩個(gè)參數(shù),故按“一元化”想法,逐步分類討論,這一過(guò)程中有可能分類不全面、不徹底.10、C【解析】

根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項(xiàng)公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項(xiàng)為,第二項(xiàng)為,所以公比為.所以,所以.故選:C【點(diǎn)睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項(xiàng)公式,屬于基礎(chǔ)題.11、B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.12、A【解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.14、【解析】

令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過(guò)定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問(wèn)題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.15、0【解析】

由題意,列方程組可求,即求.【詳解】∵在點(diǎn)處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計(jì)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問(wèn)題,屬于中檔題.18、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】

(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離,因?yàn)椋?dāng)且僅當(dāng)時(shí),取得最小值為,此時(shí)的直角坐標(biāo)為即.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線參數(shù)方程求解點(diǎn)到直線距離的最小值問(wèn)題,屬于中檔題.19、(1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】

(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)因?yàn)榈挠^測(cè)值,所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運(yùn)算求解能力.20、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論