版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.2.已知集合,集合,則().A. B.C. D.3.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.24.已知,則下列關系正確的是()A. B. C. D.5.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.86.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元7.若為虛數(shù)單位,則復數(shù),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.數(shù)列滿足,且,,則()A. B.9 C. D.79.已知復數(shù)滿足,且,則()A.3 B. C. D.10.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.611.設復數(shù)滿足為虛數(shù)單位),則()A. B. C. D.12.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.14.為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.15.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.16.在中,,,,則________,的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.18.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.19.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如下表:學生序號1234567數(shù)學成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望;②根據(jù)上表數(shù)據(jù),求物理成績關于數(shù)學成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.768381252620.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.21.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.22.(10分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.2.A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.3.D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.4.A【解析】
首先判斷和1的大小關系,再由換底公式和對數(shù)函數(shù)的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.5.A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.6.D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.7.B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎題.8.A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9.C【解析】
設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數(shù)的乘法法則的應用,考查共軛復數(shù)的應用.10.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.11.B【解析】
易得,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數(shù)的乘法、除法運算,考查學生的基本計算能力,是一道容易題.12.D【解析】
將函數(shù)的零點個數(shù)問題轉化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉化思想和數(shù)形結合思想,屬于較難的壓軸題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用復數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據(jù)復數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎題.14.2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.15.【解析】
基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.16.【解析】
利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)面積的最小值為;四邊形的面積為【解析】
(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標方程即可;(2)由(1)得曲線的極坐標方程,設,,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標方程為,即,所以,曲線的直角坐標方程.(2)依題意得的極坐標方程為設,,,則,,故,當且僅當(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點睛】本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、點到直線的距離公式、三角函數(shù)的單調性,考查了推理能力與計算能力,屬于中檔題.18.(1)(2)【解析】
(1)當時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【詳解】(1)當時,不等式可化為:①當時,不等式化為,解得:②當時,不等式化為,解得:,③當時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標軸的交點坐標分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應用,還考查分類討論的思想和運算求解的能力,屬于中檔題.19.(1)不同的樣本的個數(shù)為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績?yōu)?6分.【解析】
(1)按比例抽取即可,再用乘法原理計算不同的樣本數(shù).(2)名學生中物理和數(shù)學都優(yōu)秀的有3名學生,任取3名學生,都優(yōu)秀的學生人數(shù)服從超幾何分布,故可得其概率分布列及其數(shù)學期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預測該同學的物理成績.【詳解】(1)依據(jù)分層抽樣的方法,24名女同學中應抽取的人數(shù)為名,18名男同學中應抽取的人數(shù)為名,故不同的樣本的個數(shù)為.(2)①∵7名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為3名,∴的取值為0,1,2,3.∴,,,.∴的分布列為0123∴.②∵,.∴線性回歸方程為.當時,.可預測該同學的物理成績?yōu)?6分.【點睛】在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).20.(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.21.(1)(2)【解析】
(1)不妨設,,計算得到,根據(jù)面積得到,計算得到答案.(2)設,,,聯(lián)立方程利用韋達定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設,,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設,,,則.∵,∴,設直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點睛】本題考查了橢圓方程,定值問題,意在考查學生的計算能力和綜合應用能力.22.(1)或.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國電子計算機設備制造行業(yè)市場全景監(jiān)測及投資策略研究報告
- 軸瓦體行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 幼兒園大班課件-保護眼睛
- 煤矸石磚綜合加工項目可行性實施報告
- 2020-2025年中國百貨零售行業(yè)投資潛力分析及行業(yè)發(fā)展趨勢報告
- 晉江市舒適陶瓷公司溫室氣體排放報告(2024年)
- 2025房產建筑動漫設計合同
- 水泥發(fā)泡板項目可行性報告(投資建議模板參考)
- 2024中國其他非金屬礦采選行業(yè)分析報告
- 2025柑桔購銷合同范本
- 國家開放大學電大《刑法學(1)》期末題庫及答案
- 【正版授權】 ISO 9073-1:2023 EN Nonwovens - Test methods - Part 1: Determination of mass per unit area
- CJT156-2001 溝槽式管接頭
- 張成?!豆补芾韺W》(修訂版)課后習題詳解
- 耳穴治療糖尿病的國際趨勢
- 便利店轉讓簡單合同范本
- 腦卒中后吞咽障礙患者進食護理試題及答案
- 中草藥產業(yè)園規(guī)劃方案
- 人力資源外包投標方案
- 護理文書書寫規(guī)范
- MOOC 計量經濟學-西南財經大學 中國大學慕課答案
評論
0/150
提交評論