版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
素養(yǎng)拓展15平面向量中的最值(范圍)問(wèn)題(精講+精練)一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、平面向量中的最值(范圍)問(wèn)題平面向量中的范圍、最值問(wèn)題是熱點(diǎn)問(wèn)題,也是難點(diǎn)問(wèn)題,此類問(wèn)題綜合性強(qiáng),體現(xiàn)了知識(shí)的交匯組合.其基本題型是根據(jù)已知條件求某個(gè)變量的范圍、最值,比如向量的模、數(shù)量積、向量夾角、系數(shù)的范圍等,解題思路通常有兩種:一是“形化”,即利用平面向量的幾何意義,先將問(wèn)題轉(zhuǎn)化為平面幾何中的最值或取值范圍問(wèn)題,然后根據(jù)平面圖形的特征直接進(jìn)行判斷;二是“數(shù)化”,即利用平面向量的坐標(biāo)運(yùn)算,先把問(wèn)題轉(zhuǎn)化為代數(shù)中的函數(shù)最值與值域、不等式的解集、方程的有解等問(wèn)題,然后利用函數(shù)、不等式、方程有關(guān)知識(shí)來(lái)解決.二、極化恒等式設(shè)a,b是平面內(nèi)的兩個(gè)向量,則有SKIPIF1<0證明:SKIPIF1<0,①SKIPIF1<0,②將兩式相減可得SKIPIF1<0,這個(gè)等式在數(shù)學(xué)上我們稱為極化恒等式.①幾何解釋1(平行四邊形模型)以SKIPIF1<0,SKIPIF1<0為一組鄰邊構(gòu)造平行四邊形SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.即“從平行四邊形一個(gè)頂點(diǎn)出發(fā)的兩個(gè)邊向量的數(shù)量積是和對(duì)角線長(zhǎng)與差對(duì)角線長(zhǎng)平方差的SKIPIF1<0”.②幾何解釋2(三角形模型)在平行四邊形模型結(jié)論的基礎(chǔ)上,若設(shè)M為對(duì)角線的交點(diǎn),則由SKIPIF1<0變形為SKIPIF1<0,得SKIPIF1<0,該等式即是極化恒等式在三角形中的體現(xiàn),也是我們最常用的極化恒等式的幾何模型.注:具有三角幾何背景的數(shù)學(xué)問(wèn)題利用極化恒等式考慮尤為簡(jiǎn)單,讓“秒殺”向量成為另一種可能;我們從極化恒等式看到向量的數(shù)量積可轉(zhuǎn)化為中線長(zhǎng)與半底邊長(zhǎng)的平方差,此恒等式的精妙之處在于建立向量與幾何長(zhǎng)度(數(shù)量)之間的橋梁,實(shí)現(xiàn)向量與幾何、代數(shù)的巧妙結(jié)合.二、題型精講精練二、題型精講精練【典例1】(極化恒等式的應(yīng)用)已知SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0的最小值為SKIPIF1<0,若SKIPIF1<0為邊SKIPIF1<0上任意一點(diǎn),求SKIPIF1<0的最小值.解:令SKIPIF1<0(其中SKIPIF1<0),則SKIPIF1<0三點(diǎn)共線(如圖),從而SKIPIF1<0的幾何意義表示點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,這說(shuō)明SKIPIF1<0是等邊三角形,SKIPIF1<0為邊SKIPIF1<0上的高,故SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,則由向量極化恒等式可得SKIPIF1<0,其中SKIPIF1<0為點(diǎn)SKIPIF1<0到邊SKIPIF1<0的距離.即當(dāng)點(diǎn)SKIPIF1<0在垂足SKIPIF1<0(非端點(diǎn))處時(shí),SKIPIF1<0達(dá)到最小值.【典例2】(數(shù)量積的最值(范圍))已知SKIPIF1<0SKIPIF1<0,若點(diǎn)M是SKIPIF1<0所在平面內(nèi)的一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】以SKIPIF1<0為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系如圖所示,依題意SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.【典例3】(模的最值(范圍))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,記SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.1【答案】A【解析】在SKIPIF1<0中,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為等邊三角形,以SKIPIF1<0為鄰邊作平行四邊形SKIPIF1<0,設(shè)SKIPIF1<0交于點(diǎn)SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,取SKIPIF1<0的起點(diǎn)為SKIPIF1<0,可知SKIPIF1<0的終點(diǎn)SKIPIF1<0的軌跡為以點(diǎn)SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓,如圖,當(dāng)點(diǎn)SKIPIF1<0為SKIPIF1<0的延長(zhǎng)線與圓SKIPIF1<0的交點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0與圓SKIPIF1<0的交點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0;所以SKIPIF1<0.故選:A.【典例4】(夾角的最值(范圍))平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0夾角的余弦值的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由SKIPIF1<0兩邊平方得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取等號(hào).則SKIPIF1<0與SKIPIF1<0夾角的余弦值的最大值SKIPIF1<0.故選:A.【題型訓(xùn)練-刷模擬】1.極化恒等式的應(yīng)用1.如圖,BC、DE是半徑為1的圓O的兩條直徑,,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)閳A半徑為1SKIPIF1<0是直徑,SKIPIF1<0所以SKIPIF1<0根據(jù)向量加法和減法法則知:SKIPIF1<0;又SKIPIF1<0是直徑,所以SKIPIF1<0則SKIPIF1<0SKIPIF1<0故選B2.如圖,在SKIPIF1<0中SKIPIF1<0,SKIPIF1<0點(diǎn)是線段SKIPIF1<0上一動(dòng)點(diǎn).若以SKIPIF1<0為圓心?半徑為1的圓與線段SKIPIF1<0交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0的最小值為(
)A.1 B.2 C.3 D.4【答案】B【解析】由題意,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,易知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故選B3.如圖,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0在邊SKIPIF1<0上,且,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則的值是A. B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】B【解析】過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0.因?yàn)镸是AC的中點(diǎn),故SKIPIF1<0是SKIPIF1<0的中點(diǎn),故SKIPIF1<0是SKIPIF1<0的中位線,故SKIPIF1<0且SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0.故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,所以SKIPIF1<0.故選A4.已知SKIPIF1<0的斜邊SKIPIF1<0的長(zhǎng)為4,設(shè)SKIPIF1<0是以SKIPIF1<0為圓心,1為半徑的圓上的任意一點(diǎn),則SKIPIF1<0的取值范圍是().A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如圖所示,在SKIPIF1<0上,不妨取SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0.設(shè)圓的半徑為SKIPIF1<0,而SKIPIF1<0,則:SKIPIF1<0.因此SKIPIF1<0的取值范圍是SKIPIF1<0.故選C5.已知圖中正六邊形SKIPIF1<0的邊長(zhǎng)為6,圓O的圓心為正六邊形的中心,直徑為4,若點(diǎn)P在正六邊形的邊上運(yùn)動(dòng),SKIPIF1<0為圓O的直徑,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)檎呅蜸KIPIF1<0的邊長(zhǎng)為6,圓O的圓心為正六邊形的中心,直徑為4,所以正六邊形SKIPIF1<0的內(nèi)切圓的半徑為SKIPIF1<0,外接圓的半徑SKIPIF1<0,又由SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D6.已知邊長(zhǎng)為2的正方形ABCD內(nèi)接于圓O,點(diǎn)P是正方形ABCD四條邊上的動(dòng)點(diǎn),MN是圓O的一條直徑,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)圓的半徑為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.如圖,根據(jù)向量加法的三角形法則可知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.由已知可得,正方形上的點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.7.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為鈍角,SKIPIF1<0是邊SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),且SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0__________.【解析】取SKIPIF1<0的中點(diǎn),取SKIPIF1<0,,SKIPIF1<0,因?yàn)榈淖钚≈礢KIPIF1<0,所以.作SKIPIF1<0,垂足為SKIPIF1<0,如圖,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因?yàn)?,所以由正弦定理得:SKIPIF1<0,,所以SKIPIF1<0SKIPIF1<0.故答案為:.8.如圖,圓SKIPIF1<0為SKIPIF1<0的內(nèi)切圓,已知SKIPIF1<0,過(guò)圓心SKIPIF1<0的直線SKIPIF1<0交圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),則SKIPIF1<0的取值范圍是_________.【解析】圓O的半徑為1,考慮到P、Q兩點(diǎn)都是動(dòng)點(diǎn),不妨將SKIPIF1<0,這樣一轉(zhuǎn)化,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.若Q在SKIPIF1<0的投影為SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0,因此SKIPIF1<0的取值范圍是SKIPIF1<0.2.數(shù)量積的最值(范圍)問(wèn)題一、單選題1.(2023·河南安陽(yáng)·統(tǒng)考三模)已知菱形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為菱形的中心,SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,其中SKIPIF1<0,將SKIPIF1<0、SKIPIF1<0用基底SKIPIF1<0表示,再利用平面向量數(shù)量積的運(yùn)算性質(zhì)可求得SKIPIF1<0的最小值.【詳解】設(shè)SKIPIF1<0,其中SKIPIF1<0,由平面向量數(shù)量積的定義可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0為菱形SKIPIF1<0的中心,則SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:C.2.(2023·湖北武漢·武漢二中校聯(lián)考模擬預(yù)測(cè))如圖,已知SKIPIF1<0是半徑為2,圓心角為SKIPIF1<0的扇形,點(diǎn)SKIPIF1<0分別在SKIPIF1<0上,且SKIPIF1<0,點(diǎn)SKIPIF1<0是圓弧SKIPIF1<0上的動(dòng)點(diǎn)(包括端點(diǎn)),則SKIPIF1<0的最小值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,則SKIPIF1<0,利用平面向量的坐標(biāo)運(yùn)算得SKIPIF1<0,結(jié)合基本不等式即可求得最值.【詳解】如圖,以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系
則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立則SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故選:A.3.(2023·河南新鄉(xiāng)·新鄉(xiāng)市第一中學(xué)??寄M預(yù)測(cè))在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)SKIPIF1<0,利用余弦定理可求得SKIPIF1<0,根據(jù)向量數(shù)量積定義可得SKIPIF1<0,利用三角形三邊關(guān)系可求得SKIPIF1<0的范圍,結(jié)合二次函數(shù)性質(zhì)可求得結(jié)果.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,由余弦定理得:SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.4.(2023·江蘇鎮(zhèn)江·江蘇省鎮(zhèn)江中學(xué)??寄M預(yù)測(cè))已知半徑為1的圓O上有三個(gè)動(dòng)點(diǎn)A,B,C,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】建立平面直角坐標(biāo)系,求出相關(guān)點(diǎn)和向量的坐標(biāo),用數(shù)量積的坐標(biāo)運(yùn)算.SKIPIF1<0,轉(zhuǎn)化為直線SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn)求參數(shù)最值問(wèn)題.【詳解】因?yàn)镾KIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系:
則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,即SKIPIF1<0,依題意直線SKIPIF1<0與圓有公共點(diǎn),所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.
故選:A5.(2023·湖南長(zhǎng)沙·長(zhǎng)沙市實(shí)驗(yàn)中學(xué)校考二模)已知△ABC是單位圓O的內(nèi)接三角形,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】A【分析】由題設(shè)易知SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,進(jìn)而求SKIPIF1<0即可得答案.【詳解】由圓O是△ABC的外接圓,且SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故選:A6.(2023·全國(guó)·高三專題練習(xí))已知邊長(zhǎng)為2的菱形SKIPIF1<0中,點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)SKIPIF1<0,根據(jù)線性運(yùn)算進(jìn)行變換可求得SKIPIF1<0;以菱形對(duì)角線交點(diǎn)為原點(diǎn),對(duì)角線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,利用坐標(biāo)表示出SKIPIF1<0,得到關(guān)于SKIPIF1<0的二次函數(shù),求得二次函數(shù)最小值即為結(jié)果.【詳解】由題意知:SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0
SKIPIF1<0以SKIPIF1<0與SKIPIF1<0交點(diǎn)為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸,SKIPIF1<0為SKIPIF1<0軸建立如下圖所示的平面直角坐標(biāo)系:SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0本題正確選項(xiàng):SKIPIF1<0【點(diǎn)睛】本題考查向量數(shù)量積的運(yùn)算問(wèn)題,涉及到利用定義的運(yùn)算和數(shù)量積的坐標(biāo)運(yùn)算,解題關(guān)鍵是能夠通過(guò)線性運(yùn)算進(jìn)行變換,通過(guò)數(shù)量積運(yùn)算的定義求得夾角;再通過(guò)建立平面直角坐標(biāo)系的方式,將問(wèn)題轉(zhuǎn)化為坐標(biāo)運(yùn)算,通過(guò)函數(shù)關(guān)系求解得到最值.7.(2023·全國(guó)·高三專題練習(xí))已知菱形ABCD的邊長(zhǎng)為2,SKIPIF1<0,點(diǎn)E在邊BC上,SKIPIF1<0,若G為線段DC上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為(
)A.2 B.SKIPIF1<0C.SKIPIF1<0 D.4【答案】B【分析】利用向量的數(shù)量積的定義及數(shù)量積的運(yùn)算,結(jié)合向量的線性運(yùn)算即可求解.【詳解】由題意可知,如圖所示因?yàn)榱庑蜛BCD的邊長(zhǎng)為2,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決此題的關(guān)鍵是利用向量的線性運(yùn)算求出SKIPIF1<0,結(jié)合向量數(shù)量積定義和運(yùn)算即可.8.(2023·全國(guó)·高三專題練習(xí))圓SKIPIF1<0為銳角SKIPIF1<0的外接圓,SKIPIF1<0,點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】把SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,由余弦定理、數(shù)量積的定義得SKIPIF1<0,討論SKIPIF1<0的位置得SKIPIF1<0,結(jié)合銳角三角形SKIPIF1<0恒成立,即可得范圍.【詳解】由SKIPIF1<0為銳角三角形,則外接圓圓心在三角形內(nèi)部,如下圖示,又SKIPIF1<0,而SKIPIF1<0,若外接圓半徑為r,則SKIPIF1<0,故SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,對(duì)于SKIPIF1<0且SKIPIF1<0在圓SKIPIF1<0上,當(dāng)SKIPIF1<0為直徑時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0重合時(shí)SKIPIF1<0,所以SKIPIF1<0,綜上,SKIPIF1<0,銳角三角形中SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0,則SKIPIF1<0恒成立,綜上,SKIPIF1<0.故選:C二、填空題9.(2023·江蘇鹽城·統(tǒng)考三模)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】利用正弦定理和向量數(shù)量積的定義得SKIPIF1<0,再根據(jù)SKIPIF1<0的范圍和正切函數(shù)的值域即可求出其范圍.【詳解】根據(jù)正弦定理得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的取值范圍SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023·廣東廣州·廣州市從化區(qū)從化中學(xué)校考模擬預(yù)測(cè))如圖所示,△ABC是邊長(zhǎng)為8的等邊三角形,點(diǎn)P為AC邊上的一個(gè)動(dòng)點(diǎn),長(zhǎng)度為6的線段EF的中點(diǎn)為點(diǎn)B,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】由向量的數(shù)量積公式得出SKIPIF1<0,求出SKIPIF1<0的最大值和最小值即可得出結(jié)果.【詳解】由線段EF的中點(diǎn)為點(diǎn)B,得出SKIPIF1<0.SKIPIF1<0SKIPIF1<0.當(dāng)點(diǎn)P位于點(diǎn)A或點(diǎn)C時(shí),SKIPIF1<0取最大值8.當(dāng)點(diǎn)P位于SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0取最小值,即SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023·全國(guó)·高三專題練習(xí))如圖,SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0為圓心為SKIPIF1<0、半徑為1的圓的動(dòng)直徑,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】由向量的運(yùn)算得出SKIPIF1<0,再由SKIPIF1<0的范圍得出SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0,且SKIPIF1<0.即SKIPIF1<0設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<012.(2023·全國(guó)·高三專題練習(xí))如圖,在SKIPIF1<0中,已知SKIPIF1<0,點(diǎn)D,E分別在邊AB,AC上,且SKIPIF1<0SKIPIF1<0,點(diǎn)F為線段DE上的動(dòng)點(diǎn),則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,以SKIPIF1<0為基底,將SKIPIF1<0分別用SKIPIF1<0表示,再結(jié)合數(shù)量積的運(yùn)算律把SKIPIF1<0用SKIPIF1<0表示,再結(jié)合二次函數(shù)的性質(zhì)即可得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,對(duì)于SKIPIF1<0,其開(kāi)口向上,對(duì)稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了平面向量的線性運(yùn)算及數(shù)量積的運(yùn)算,以SKIPIF1<0為基底,將SKIPIF1<0分別用SKIPIF1<0表示,是解決本題的關(guān)鍵.13.(2023·全國(guó)·高三專題練習(xí))在SKIPIF1<0中,SKIPIF1<0是其外心,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.邊SKIPIF1<0,SKIPIF1<0上分別有兩動(dòng)點(diǎn)SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0恰好將SKIPIF1<0分為面積相等的兩部分.則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【分析】利用余弦定理求出SKIPIF1<0,再由正弦定理求出外接圓半徑SKIPIF1<0,利用外心定義及數(shù)量積定義計(jì)算出SKIPIF1<0、SKIPIF1<0及SKIPIF1<0的值,又SKIPIF1<0,利用數(shù)量積運(yùn)算表示SKIPIF1<0,利用基本不等式即可求出最值.【詳解】在SKIPIF1<0中,由余弦定理即SKIPIF1<0及SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.得SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)榫€段SKIPIF1<0恰好將SKIPIF1<0分為面積相等的兩部分,所以SKIPIF1<0,因?yàn)镾KIPIF1<0是其外心,所以SKIPIF1<0,SKIPIF1<0,由正弦定理SKIPIF1<0得SKIPIF1<0,且SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)即SKIPIF1<0,等號(hào)成立,此時(shí)SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<014.(2023·河北·統(tǒng)考模擬預(yù)測(cè))如圖,在邊長(zhǎng)為2的正方形SKIPIF1<0中.以SKIPIF1<0為圓心,1為半徑的圓分別交SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0.當(dāng)點(diǎn)SKIPIF1<0在劣弧SKIPIF1<0上運(yùn)動(dòng)時(shí),SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,利用平面向量數(shù)量積的坐標(biāo)表示結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】如圖,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.故答案為:SKIPIF1<0.3.模的最值(范圍)問(wèn)題一、單選題1.(2023·陜西榆林·??寄M預(yù)測(cè))已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由向量的數(shù)量積與模的關(guān)系消元化簡(jiǎn)計(jì)算即可.【詳解】設(shè)向量SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:D.2.(2023·新疆·統(tǒng)考二模)已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(θ為SKIPIF1<0與SKIPIF1<0的夾角),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】C【分析】由平面向量數(shù)量積的運(yùn)算,結(jié)合平面向量的模長(zhǎng)的計(jì)算公式求解即可.【詳解】因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(θ為SKIPIF1<0與SKIPIF1<0的夾角),則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0的最小值為1,即SKIPIF1<0的最小值為1.故選:C.3.(2023·北京海淀·??既#┮阎猄KIPIF1<0為單位向量,向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.1 B.2 C.SKIPIF1<0 D.4【答案】C【分析】設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0求出SKIPIF1<0,再根據(jù)SKIPIF1<0得到SKIPIF1<0,最后根據(jù)向量模的坐標(biāo)表示及二次函數(shù)的性質(zhì)計(jì)算可得.【詳解】依題意設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0的最大值為SKIPIF1<0.故選:C4.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都是單位向量,若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)數(shù)量積的運(yùn)算律得到SKIPIF1<0,設(shè)SKIPIF1<0,即可得到SKIPIF1<0,再由SKIPIF1<0求出SKIPIF1<0的范圍,即可得解.【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故選:C.5.(2023·全國(guó)·高三專題練習(xí))已知平面向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】在平面內(nèi)一點(diǎn)SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,計(jì)算出SKIPIF1<0、SKIPIF1<0的值,利用向量三角不等式可求得SKIPIF1<0的最大值.【詳解】在平面內(nèi)一點(diǎn)SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為等腰直角三角形,則SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0、SKIPIF1<0同向時(shí),等號(hào)成立,故SKIPIF1<0的最大值為SKIPIF1<0.故選:B.6.(2023·浙江·模擬預(yù)測(cè))已知在三角形ABC中,SKIPIF1<0,點(diǎn)M,N分別為邊AB,AC上的動(dòng)點(diǎn),SKIPIF1<0,其中SKIPIF1<0,點(diǎn)P,Q分別為MN,BC的中點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0,再計(jì)算SKIPIF1<0,得到函數(shù)SKIPIF1<0,最后根據(jù)二次函數(shù)在區(qū)間最值的求法即可求解.【詳解】SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故選:B7.(2023·全國(guó)·高三專題練習(xí))在長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上運(yùn)動(dòng),點(diǎn)SKIPIF1<0在邊SKIPIF1<0上運(yùn)動(dòng),且保持SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】建立坐標(biāo)系,設(shè)SKIPIF1<0,表示出各點(diǎn)的坐標(biāo),根據(jù)向量的模和三角函數(shù)的圖象和性質(zhì)即可求出.【詳解】解:如圖,以SKIPIF1<0為原點(diǎn),SKIPIF1<0所在的直線為SKIPIF1<0軸,SKIPIF1<0所在的直線為SKIPIF1<0軸,建立平面直角坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為SKIPIF1<0.故選:A.8.(2023·全國(guó)·高三專題練習(xí))已知平面向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)已知條件可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得點(diǎn)SKIPIF1<0的軌跡為圓,由圓的性質(zhì)即可求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,半徑SKIPIF1<0的圓上,SKIPIF1<0表示圓SKIPIF1<0上的點(diǎn)SKIPIF1<0與定點(diǎn)SKIPIF1<0的距離,所以SKIPIF1<0的最小值為SKIPIF1<0,故選:D.9.(2023·全國(guó)·高三專題練習(xí))已知單位向量SKIPIF1<0與向量SKIPIF1<0垂直,若向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意不妨設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,由模的坐標(biāo)表示得點(diǎn)SKIPIF1<0在圓上,由SKIPIF1<0的幾何意義,只要求得圓心到原點(diǎn)的距離后可得結(jié)論.【詳解】由題意不妨設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板從業(yè)人員退職酬勞金運(yùn)用及支配辦法范本
- 2025墻體廣告制作合同范文
- 課題申報(bào)參考:綠色轉(zhuǎn)型下“綠天鵝”風(fēng)險(xiǎn)傳染網(wǎng)絡(luò)效應(yīng)研究:實(shí)證識(shí)別與政策協(xié)同
- 課題申報(bào)參考:聯(lián)合國(guó)教科文組織STEM一類中心建設(shè)研究
- 課題申報(bào)參考:考慮農(nóng)戶異質(zhì)性的農(nóng)產(chǎn)品直播電商平臺(tái)供應(yīng)鏈合作模式與運(yùn)營(yíng)決策研究
- 設(shè)計(jì)未來(lái)辦公體驗(yàn)科技創(chuàng)新的視角
- 科技助力下的現(xiàn)代家庭急救體系
- 2024年會(huì)議電視圖像保密機(jī)項(xiàng)目資金籌措計(jì)劃書(shū)
- 游戲化學(xué)習(xí)在小學(xué)科普教育中的重要性研究
- 河北省石家莊市正定縣2024-2025學(xué)年八年級(jí)上學(xué)期1月期末道德與法治試題(含答案)
- 2023-2024學(xué)年度人教版一年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)
- 2024醫(yī)療銷售年度計(jì)劃
- 稅務(wù)局個(gè)人所得稅綜合所得匯算清繳
- 人教版語(yǔ)文1-6年級(jí)古詩(shī)詞
- 上學(xué)期高二期末語(yǔ)文試卷(含答案)
- 職業(yè)發(fā)展展示園林
- 七年級(jí)下冊(cè)英語(yǔ)單詞默寫(xiě)表直接打印
- 2024版醫(yī)療安全不良事件培訓(xùn)講稿
- 中學(xué)英語(yǔ)教學(xué)設(shè)計(jì)PPT完整全套教學(xué)課件
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)項(xiàng)目五 運(yùn)營(yíng)效果監(jiān)測(cè)
- 比較思想政治教育學(xué)
評(píng)論
0/150
提交評(píng)論