版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.2.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統(tǒng)計落入五環(huán)內部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.3.的展開式中有理項有()A.項 B.項 C.項 D.項4.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.5.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.66.關于函數(shù)有下述四個結論:()①是偶函數(shù);②在區(qū)間上是單調遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④7.設函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.8.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.9.已知角的終邊經過點P(),則sin()=A. B. C. D.10.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位12.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.14.已知函數(shù)在處的切線與直線平行,則為________.15.已知實數(shù)x,y滿足,則的最大值為____________.16.在直角坐標系中,某等腰直角三角形的兩個頂點坐標分別為,函數(shù)的圖象經過該三角形的三個頂點,則的解析式為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。?,所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?18.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.19.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82820.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.22.(10分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.2.B【解析】
根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.3.B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.4.C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.5.D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.6.C【解析】
根據(jù)函數(shù)的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調性、最值和零點,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.7.C【解析】
恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調遞增,從而,且.所以,當且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調性與極值,函數(shù)與方程的應用,屬于中檔題.8.B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.9.A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.10.C【解析】
求函數(shù)導數(shù),分析函數(shù)單調性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調性,進而研究函數(shù)的最值,屬于常考題型.11.D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D12.A【解析】
設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用等差中項的性質和等比數(shù)列通項公式得到關于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數(shù)列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關鍵;屬于中檔題.14.【解析】
根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結合兩直線的位置關系得出兩直線斜率之間的關系,考查計算能力,屬于基礎題.15.1【解析】
直接用表示出,然后由不等式性質得出結論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點睛】本題考查不等式的性質,掌握不等式的性質是解題關鍵.16.【解析】
結合題意先畫出直角坐標系,點出所有可能組成等腰直角三角形的點,采用排除法最終可確定為點,再由函數(shù)性質進一步求解參數(shù)即可【詳解】等腰直角三角形的第三個頂點可能的位置如下圖中的點,其中點與已有的兩個頂點橫坐標重復,舍去;若為點則點與點的中間位置的點的縱坐標必然大于或小于,不可能為,因此點也舍去,只有點滿足題意.此時點為最大值點,所以,又,則,所以點,之間的圖像單調,將,代入的表達式有由知,因此.故答案為:【點睛】本題考查由三角函數(shù)圖像求解解析式,數(shù)形結合思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學期望,意在考查學生的計算能力和應用能力.18.(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.19.(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】
(1)計算得到,由此可得結論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據(jù)數(shù)學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數(shù)學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.20.(1).(2).【解析】
(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質,即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉角”尋求角的關系,利用“角轉邊”尋求邊的關系,利用余弦定理借助三邊關系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經常利用三角形內角和定理,三角形面積公式,結合正、余弦定理解題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版石材供應商評選與選擇合同
- 2025年度裝配式廚房衛(wèi)生間房屋裝飾裝修施工合同3篇
- 2025年度古建筑修繕勞務合同3篇
- 二零二五年度房屋買賣及室內裝修一體化服務合同3篇
- 2025年度保障房東權益的農業(yè)用地租賃合同細則
- 二零二五年度深水井鉆井設備供應與售后服務合同3篇
- 2025年度承攬合同:智能電網(wǎng)設備承攬與維護3篇
- 2024慶典活動交通保障與車輛租賃服務合同3篇
- 2025年度藝術品拍賣委托管理合同2篇
- 二零二五年度航空航天產業(yè)招商代理合同3篇
- 2021-2022學年陜西省寶雞市陳倉區(qū)北師大版六年級上冊期末考試數(shù)學試卷(含答案解析)
- 應用PDCA提高入院宣教的知曉率
- 裝修增減項單模板
- 線性系統(tǒng)理論鄭大鐘307張課件
- 2019-2020學年第一學期廣東省廣州市天河區(qū)3年級數(shù)學期末考試卷
- 纏論公式(最完美自動畫筆公式)主圖
- 肩凝證(肩周炎)的臨床路徑修改后
- 胸外科教學講解課件
- MT-T 1199-2023 煤礦用防爆柴油機無軌膠輪運輸車輛通用安全技術條件
- 國家開放大學《高等數(shù)學基礎》形考任務1-4參考答案
- 污水雨水管道施工方案
評論
0/150
提交評論