2022屆浙江省溫州市“十五校聯(lián)合體”高考數(shù)學四模試卷含解析_第1頁
2022屆浙江省溫州市“十五校聯(lián)合體”高考數(shù)學四模試卷含解析_第2頁
2022屆浙江省溫州市“十五校聯(lián)合體”高考數(shù)學四模試卷含解析_第3頁
2022屆浙江省溫州市“十五校聯(lián)合體”高考數(shù)學四模試卷含解析_第4頁
2022屆浙江省溫州市“十五校聯(lián)合體”高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結(jié)果為()A. B.6 C. D.2.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.63.已知集合,,若,則()A.4 B.-4 C.8 D.-84.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}5.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內(nèi)對應的點位于第三象限C.的共軛復數(shù) D.7.設(shè),,則()A. B. C. D.8.雙曲線的漸近線方程為()A. B. C. D.9.已知,,則()A. B. C. D.10.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.11.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.12.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則的取值范圍是__14.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.15.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.16.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定的值.18.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.19.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.20.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.21.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.22.(10分)在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.2.A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.3.B【解析】

根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎(chǔ)題.4.C【解析】

根據(jù)集合的并集、補集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎(chǔ)題.5.B【解析】

根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進行抽樣,屬于基礎(chǔ)題.6.D【解析】

利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內(nèi)對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎(chǔ)題.7.D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎(chǔ)題.8.C【解析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.9.D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.10.C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關(guān)鍵.11.A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.12.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運算,屬于基礎(chǔ)題.14.3-260【解析】

(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.15.【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據(jù)雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.16.4【解析】

設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設(shè)四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點睛】本題考查了三棱錐的外接球問題,考查了學生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學期望;(3)由,且,可知若,則,或若,則,再分別計算兩種情況下的所需總費用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16”為事件,因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分數(shù)表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用(單位:元)因為,且,1°若,則,(元);2°若,則,(元).因為,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級濾芯和二級濾芯所需費用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級濾芯所需總費用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因為所以選擇方案:.【點睛】此題考查離散型隨機變量的分布列、數(shù)學期望的求法及應用,考查古典概型,考查運算求解能力,屬于中檔題.18.【解析】

利用極坐標方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【點睛】本題考查極坐標方程與普通方程,參數(shù)方程與普通方程間的互化,考查學生的計算能力,是一道容易題.19.(1)(2)【解析】

(1))當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎(chǔ)題.20.(1)見解析;(2)【解析】

(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標系,由已知求出線段長,得出各點坐標,用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論