




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.2.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.3.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.4.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.5.函數(shù)在上單調遞增,則實數(shù)的取值范圍是()A. B. C. D.6.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值7.已知集合,,則()A. B. C. D.8.以,為直徑的圓的方程是A. B.C. D.9.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.10.設是虛數(shù)單位,復數(shù)()A. B. C. D.11.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.12.設,為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為__________.14.數(shù)據(jù)的標準差為_____.15.已知,則=___________,_____________________________16.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求f(x)的單調遞增區(qū)間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.18.(12分)已知函數(shù),曲線在點處的切線方程為求a,b的值;證明:.19.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)設函數(shù).(1)若,求函數(shù)的值域;(2)設為的三個內角,若,求的值;22.(10分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)題意表示出各位上的數(shù)字所對應的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.2.C【解析】
根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.3.B【解析】
設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.4.B【解析】
把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質是解題關鍵.5.B【解析】
對分類討論,當,函數(shù)在單調遞減,當,根據(jù)對勾函數(shù)的性質,求出單調遞增區(qū)間,即可求解.【詳解】當時,函數(shù)在上單調遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調性,熟練掌握簡單初等函數(shù)性質是解題關鍵,屬于基礎題.6.D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.7.B【解析】
求出集合,利用集合的基本運算即可得到結論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數(shù)的性質求出集合是解決本題的關鍵,屬于基礎題.8.A【解析】
設圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.9.D【解析】
直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.10.D【解析】
利用復數(shù)的除法運算,化簡復數(shù),即可求解,得到答案.【詳解】由題意,復數(shù),故選D.【點睛】本題主要考查了復數(shù)的除法運算,其中解答中熟記復數(shù)的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.11.A【解析】
根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據(jù)基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數(shù)學運算能力和數(shù)學建模能力,屬于較難題.12.D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.14.【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.15.?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.16.【解析】
由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標,代入拋物線方程中可求點的縱坐標,從而可求出點的坐標,再利用兩點間的距離公式可求得結果.【詳解】解:因為是拋物線的焦點,所以,設點的坐標為,因為為的中點,而點的橫坐標為0,所以,所以,解得,所以點的坐標為所以,故答案為:【點睛】此題考查拋物線的性質,中點坐標公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調遞增區(qū)間.(2)先由求得,利用正弦定理得到,結合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18.(1);(2)見解析【解析】分析:第一問結合導數(shù)的幾何意義以及切點在切線上也在函數(shù)圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數(shù),利用導數(shù)研究函數(shù)的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數(shù)研究函數(shù)的綜合問題,在求解的過程中,涉及到的知識點有導數(shù)的幾何意義,有關切線的問題,還有就是應用導數(shù)證明不等式,可以構造新函數(shù),轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.19.(1),;(2)1.【解析】
(1)利用正弦的和角公式,結合極坐標化為直角坐標的公式,即可求得曲線的直角坐標方程;先寫出曲線的普通方程,再利用公式化簡為極坐標即可;(2)先求出的直角坐標,據(jù)此求得中點的直角坐標,將其轉化為極坐標,聯(lián)立曲線的極坐標方程,即可求得兩點的極坐標,則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標方程為:,:的普通方程為,利用公式可得其極坐標方程為(2)由(1)可得的直角坐標方程為,故容易得,,∴,∴的極坐標方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標方程和直角坐標方程之間的轉化,涉及參數(shù)方程轉化為普通方程,以及在極坐標系中求兩點之間的距離,屬綜合基礎題.20.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設根據(jù)余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.21.(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 技術咨詢技術服務合同
- 股份代持協(xié)議模板
- 全新夫妻離婚財產協(xié)議
- 火鍋店獎懲制度
- 合同能源管理在熱計量節(jié)能改造中的實踐案例
- 雁門太守行市公開課教案
- 中北大學本科培養(yǎng)方案
- 水電站綜自改造施工方案
- 保安開除員工合同樣本
- 個人變壓器合同樣本
- 靜療橫斷面調查護理
- DB45T 1056-2014 土地整治工程 第2部分:質量檢驗與評定規(guī)程
- 2025年3月《提振消費專項行動方案》解讀學習課件
- 4-6歲幼兒同伴交往能力量表
- 人教版 數(shù)學一年級下冊 第三單元 100以內數(shù)的認識綜合素養(yǎng)評價(含答案)
- T-CEPPC 18-2024 電力企業(yè)數(shù)字化轉型成熟度評價指南
- XX化工企業(yè)停工安全風險評估報告
- 2025年濟源職業(yè)技術學院單招職業(yè)技能測試題庫學生專用
- 全國川教版信息技術八年級下冊第二單元第3節(jié)《評價文創(chuàng)作品》教學設計
- 急診科護理創(chuàng)新管理
- 臨邊防護安全培訓課件
評論
0/150
提交評論