




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學年安徽省阜陽市太和中學高三招生考試數(shù)學試題模擬測試附加題試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.2.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個3.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.4.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.5.集合的真子集的個數(shù)是()A. B. C. D.6.設函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.7.設函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.38.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.9.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.11.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.96012.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_____________.14.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.15.設,則_____,(的值為______.16.已知二項式ax-1x6的展開式中的常數(shù)項為-160三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.19.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.20.(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.21.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.22.(10分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.2.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.3.C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復試驗的公式得到結(jié)果.【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.本題主要考查了次獨立重復試驗中恰好發(fā)生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結(jié)果,屬于中檔題.4.B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.5.C【解析】
根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題.6.D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.本題主要考查函數(shù)與方程的綜合問題,難度較大.7.B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個或三個(時有三個,時有兩個),所以關(guān)于的方程只能有一個根(若有兩個根,則關(guān)于的方程有四個或五個根),由,可得的值分別為,則故選B.本題考查數(shù)形結(jié)合以及函數(shù)與方程的應用,考查轉(zhuǎn)化思想以及計算能力,屬于常考題型.8.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.9.D【解析】
根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.10.B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎(chǔ)題.11.B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.12.C【解析】
根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.本題考查了交集及其運算,屬于基礎(chǔ)題.14.【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.15.7201【解析】
利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結(jié)果.【詳解】利用二項式系數(shù)公式,,故,,故(=,故答案為:720;1.本題考查二項展開式的通項公式的應用,考查賦值法,是基礎(chǔ)題.16.2【解析】
在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項,再根據(jù)常數(shù)項等于-160求得實數(shù)a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項為-C63故答案為:2.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉(zhuǎn)為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.本題考查參數(shù)方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎(chǔ)題.18.(1)的極坐標方程為,普通方程為;(2)【解析】
(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.本題考查參數(shù)方程與普通方程,極坐標方程與平面直角坐標方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關(guān)鍵在于明確極坐標系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.19.(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設,由(1)可得關(guān)系,再由直線l過點,可得,進而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.20.(1)(2)當時,;當時,.【解析】
(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設等比數(shù)列的公比為,則,解得,當時,,當時,.本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項公式、前項和公式等基礎(chǔ)知識,考查運算求解能力..21.(1);(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.(2)利用(1)的結(jié)論,進一步利用一元二次方程根和系數(shù)的關(guān)系式的應用求出結(jié)果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標方程為.曲線的極坐標方程為.轉(zhuǎn)換為,轉(zhuǎn)換為直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為標準式為(為參數(shù)),代入圓的直角坐標方程整理得,所以,..本題屬于基礎(chǔ)本題考查的知識要點:主要考查極坐標,參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數(shù)方程的公式,及與解析幾何相關(guān)的直線與曲線位置關(guān)系的一些解題思路.22.(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導,判斷導函數(shù)在左右兩邊的正負情
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京科技經(jīng)營管理學院《三維設計基礎(chǔ)與應用》2023-2024學年第二學期期末試卷
- 2025年不良資產(chǎn)處置市場格局分析:創(chuàng)新模式與風險控制報告
- 2025年保險數(shù)字化理賠服務客戶畫像構(gòu)建與精準營銷報告
- 北京交通職業(yè)技術(shù)學院《計價軟件實訓》2023-2024學年第二學期期末試卷
- 《財商素養(yǎng)》課件情境三 掌握財商知識具備行動之錨
- 《財商素養(yǎng)》課件情境七 操練投資工具開啟財富之門
- 《電子商務實務》課件2.1電商之路從何走起()
- 北海藝術(shù)設計學院《攝影與攝像基礎(chǔ)》2023-2024學年第二學期期末試卷
- 保山職業(yè)學院《幼兒園環(huán)境布置與設計》2023-2024學年第二學期期末試卷
- 寶雞三和職業(yè)學院《內(nèi)科學實踐A(Ⅱ)》2023-2024學年第二學期期末試卷
- 延遲退休政策驅(qū)動中國第二次人口紅利的多維度解析與展望
- 2025山東濟南屬國有企業(yè)招聘41人筆試參考題庫附帶答案詳解析
- T/CECS 10032-2019綠色建材評價保溫系統(tǒng)材料
- 江蘇揚州中學2024-2025學年數(shù)學高二下期末經(jīng)典試題含解析
- 本科評估畢業(yè)5年學生的專業(yè)培養(yǎng)目標達成情況分析
- 創(chuàng)新網(wǎng)絡中的溢出效應:生產(chǎn)網(wǎng)絡中的擴散機制
- 銀行背債協(xié)議書
- 人工智能訓練師4級模擬復習測試卷附答案
- 2025年四川省水電投資經(jīng)營集團普格電力有限公司招聘筆試參考題庫含答案解析
- 非洲地理課件
- 針對醫(yī)療行業(yè)工控系統(tǒng)的網(wǎng)絡安全防護策略研究報告
評論
0/150
提交評論