版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年吉林省長春市九臺(tái)區(qū)師范高中、實(shí)驗(yàn)高中高三一輪復(fù)習(xí)第四次過關(guān)數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,22.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.53.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.4.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.5.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.6.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.7.復(fù)數(shù)的虛部是()A. B. C. D.8.已知復(fù)數(shù),則()A. B. C. D.29.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件10.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.11.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知滿足,,,則在上的投影為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.三個(gè)小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),則三人都收到禮物的概率為______.14.函數(shù)的值域?yàn)開____.15.某中學(xué)高一年級(jí)有學(xué)生1200人,高二年級(jí)有學(xué)生900人,高三年級(jí)有學(xué)生1500人,現(xiàn)按年級(jí)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為720的樣本進(jìn)行某項(xiàng)研究,則應(yīng)從高三年級(jí)學(xué)生中抽取_____人.16.若,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.18.(12分)在中,角的對(duì)邊分別為,若.(1)求角的大小;(2)若,為外一點(diǎn),,求四邊形面積的最大值.19.(12分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合..(1)求證:平面平面;(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說明理由.21.(12分)已知函數(shù),.(1)若對(duì)于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先求出集合U,再根據(jù)補(bǔ)集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.本題考查集合補(bǔ)集的運(yùn)算,求解的關(guān)鍵是正確求出集合U和熟悉補(bǔ)集的定義,屬于簡單題.2.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.3.C【解析】
先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)椋捎谠诙x域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.4.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.5.A【解析】
首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題6.B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.7.C【解析】因?yàn)?,所以的虛部是,故選C.8.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.9.C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)?,所以,因?yàn)椋?,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.10.B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計(jì)算排除得到答案.【詳解】定義域?yàn)椋?,函?shù)為偶函數(shù),排除,排除故選本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項(xiàng)是常用的技巧.11.B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B本題考查了充分必要條件,屬于簡單題.12.A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A本題考查向量的投影,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).由此能求出三人都收到禮物的概率.【詳解】三個(gè)小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).則三人都收到禮物的概率.故答案為:.本題考查古典概型概率的求法,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14.【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋罕绢}考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。15.1.【解析】
先求得高三學(xué)生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學(xué)生占的比例為,所以應(yīng)從高三年級(jí)學(xué)生中抽取的人數(shù)為.本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.16.13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時(shí),,所以.因?yàn)椋?,可知,所以,?dāng)且僅當(dāng),,時(shí),等號(hào)成立.所以的最小值為.本題考查了解絕對(duì)值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對(duì)于不等式,函數(shù)知識(shí)的綜合應(yīng)用.18.(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時(shí),四邊形的面積取最大值,最大值為.本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.19.(1)見證明;(2)【解析】
(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時(shí)通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時(shí)注意向量的夾角與線面角間的關(guān)系.20.(1)證明見解析(2)存在,為中點(diǎn)【解析】
(1)證明面,即證明平面平面;(2)以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系.利用向量方法得,解得,所以為中點(diǎn).【詳解】(1)由于為中點(diǎn),.又,故,所以為直角三角形且,即.又因?yàn)槊?,面面,面面,故面,又面,所以面面.?)由(1)知面,又四邊形為矩形,則兩兩垂直.以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系.則,設(shè),則,設(shè)平面的法向量為,則有,令,則,則平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,設(shè)平面與平面所成角為,則由題意可得,解得,所以點(diǎn)為中點(diǎn).本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.21.(1);(2)不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【解析】
(1)分類時(shí),恒成立,時(shí),分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因?yàn)楫?dāng)時(shí),恒成立,所以,若,為任意實(shí)數(shù),恒成立.若,恒成立,即當(dāng)時(shí),,設(shè),,當(dāng)時(shí),,則在上單調(diào)遞增,當(dāng)時(shí),,則在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值.,所以,要使時(shí),恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時(shí),,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時(shí),,,所以,曲線在點(diǎn)處的切線與軸垂直等價(jià)于方程在上有實(shí)數(shù)解.而,即方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務(wù)合同范本-工程合同模板
- 品牌策劃合作協(xié)議-合同范本
- 合伙協(xié)議書范文
- 2024房屋租賃居間合同
- 2024運(yùn)輸合同物流運(yùn)輸合同糾紛案例
- 2024設(shè)立有限責(zé)公司出資協(xié)議模板
- 2024年冷庫轉(zhuǎn)讓協(xié)議合同書
- 深圳發(fā)展銀行委托貸款操作流程
- 2024年學(xué)校食堂用工合同協(xié)議書樣本
- 北京借款合同的范本2024年
- 大學(xué)會(huì)計(jì)生涯發(fā)展展示
- 2024年“312”新高考志愿填報(bào)指南
- 13區(qū)域分析與區(qū)域規(guī)劃(第三版)電子教案(第十三章)
- 小學(xué)科普社團(tuán)活動(dòng)計(jì)劃
- 初中女生會(huì)議課件省公開課金獎(jiǎng)全國賽課一等獎(jiǎng)微課獲獎(jiǎng)?wù)n件
- 跨界產(chǎn)品研發(fā)與實(shí)戰(zhàn)智慧樹知到期末考試答案2024年
- 2024年山東青島城投金融控股集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 工業(yè)機(jī)器人應(yīng)用4-裝配
- 中醫(yī)外治治療風(fēng)濕病
- 美國實(shí)時(shí)總統(tǒng)大選報(bào)告
- 外貿(mào)業(yè)務(wù)與國際市場(chǎng)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論