版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題15直線與圓1、(2023年新課標(biāo)全國(guó)Ⅰ卷)過(guò)點(diǎn)SKIPIF1<0與圓SKIPIF1<0相切的兩條直線的夾角為SKIPIF1<0,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】方法一:因?yàn)镾KIPIF1<0,即SKIPIF1<0,可得圓心SKIPIF1<0,半徑SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作圓C的切線,切點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0為鈍角,所以SKIPIF1<0;法二:圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作圓C的切線,切點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0為鈍角,則SKIPIF1<0,且SKIPIF1<0為銳角,所以SKIPIF1<0;2、(2023年全國(guó)乙卷數(shù)學(xué)(文))已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值是(
)A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.7【答案】C【詳解】法一:令SKIPIF1<0,則SKIPIF1<0,代入原式化簡(jiǎn)得SKIPIF1<0,因?yàn)榇嬖趯?shí)數(shù)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的最大值是SKIPIF1<0,法二:SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,法三:由SKIPIF1<0可得SKIPIF1<0,設(shè)SKIPIF1<0,則圓心到直線SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0故選:C.3、(2023年新課標(biāo)全國(guó)Ⅱ卷)已知直線SKIPIF1<0與SKIPIF1<0交于A,B兩點(diǎn),寫出滿足“SKIPIF1<0面積為SKIPIF1<0”的m的一個(gè)值______.【答案】SKIPIF1<0(SKIPIF1<0中任意一個(gè)皆可以)【詳解】設(shè)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,由弦長(zhǎng)公式得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0(SKIPIF1<0中任意一個(gè)皆可以).4、(2021年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)(多選題)已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,點(diǎn)SKIPIF1<0、SKIPIF1<0,則()A.點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離小于SKIPIF1<0B.點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離大于SKIPIF1<0C.當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0【答案】ACD【解析】圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最小值為SKIPIF1<0,最大值為SKIPIF1<0,A選項(xiàng)正確,B選項(xiàng)錯(cuò)誤;如下圖所示:當(dāng)SKIPIF1<0最大或最小時(shí),SKIPIF1<0與圓SKIPIF1<0相切,連接SKIPIF1<0、SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由勾股定理可得SKIPIF1<0,CD選項(xiàng)正確.故選:ACD.5、(2020全國(guó)Ⅲ文8)點(diǎn)(0,﹣1)到直線SKIPIF1<0距離的最大值為()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【解析】由SKIPIF1<0可知直線過(guò)定點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)直線SKIPIF1<0與SKIPIF1<0垂直時(shí),點(diǎn)SKIPIF1<0到直線SKIPIF1<0距離最大,即為SKIPIF1<0.6、(2020·新課標(biāo)Ⅰ文)已知圓SKIPIF1<0,過(guò)點(diǎn)(1,2)的直線被該圓所截得的弦的長(zhǎng)度的最小值為()A.1 B.2C.3 D.4【答案】B【解析】圓SKIPIF1<0化為SKIPIF1<0,所以圓心SKIPIF1<0坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)過(guò)點(diǎn)SKIPIF1<0的直線和直線SKIPIF1<0垂直時(shí),圓心到過(guò)點(diǎn)SKIPIF1<0的直線的距離最大,所求的弦長(zhǎng)最短,根據(jù)弦長(zhǎng)公式最小值為SKIPIF1<0.7、(2020·新課標(biāo)Ⅱ文理5)若過(guò)點(diǎn)SKIPIF1<0的圓與兩坐標(biāo)軸都相切,則圓心到直線SKIPIF1<0的距離為 ()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由于圓上的點(diǎn)SKIPIF1<0在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,∴圓心必在第一象限,設(shè)圓心的坐標(biāo)為SKIPIF1<0,則圓的半徑為SKIPIF1<0,圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.由題意可得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴圓心的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,圓心到直線SKIPIF1<0的距離均為SKIPIF1<0,∴圓心到直線SKIPIF1<0的距離為SKIPIF1<0.故選B.8、(2020全國(guó)Ⅰ理11】已知⊙SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作⊙SKIPIF1<0的切線SKIPIF1<0,切點(diǎn)為SKIPIF1<0,當(dāng)SKIPIF1<0最小時(shí),直線SKIPIF1<0的方程為 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】圓的方程可化為SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,∴直線SKIPIF1<0與圓相離.依圓的知識(shí)可知,四點(diǎn)SKIPIF1<0四點(diǎn)共圓,且SKIPIF1<0,∴SKIPIF1<0,而SKIPIF1<0,當(dāng)直線SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0最小.∴SKIPIF1<0即SKIPIF1<0,由SKIPIF1<0解得,SKIPIF1<0.∴以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,即SKIPIF1<0,兩圓的方程相減可得:SKIPIF1<0,即為直線SKIPIF1<0的方程,故選D.9、【2022年全國(guó)甲卷】設(shè)點(diǎn)M在直線2x+y?1=0上,點(diǎn)(3,0)和(0,1)均在⊙M上,則⊙M的方程為_(kāi)_____________.【答案】(x?1)【解析】:∵點(diǎn)M在直線2x+y?1=0上,∴設(shè)點(diǎn)M為(a,1?2a),又因?yàn)辄c(diǎn)(3,0)和(0,1)均在⊙M上,∴點(diǎn)M到兩點(diǎn)的距離相等且為半徑R,∴(a?3)2a2?6a+9+4a∴M(1,?1),R=5⊙M的方程為(x?1)2故答案為:(x?1)10、【2022年全國(guó)乙卷】過(guò)四點(diǎn)(0,0),(4,0),(?1,1),(4,2)中的三點(diǎn)的一個(gè)圓的方程為_(kāi)___________.【答案】x?22+y?32=13或x?2【解析】依題意設(shè)圓的方程為x2若過(guò)0,0,4,0,?1,1,則F=016+4D+F=01+1?D+E+F=0,解得所以圓的方程為x2+y若過(guò)0,0,4,0,4,2,則F=016+4D+F=016+4+4D+2E+F=0,解得所以圓的方程為x2+y若過(guò)0,0,4,2,?1,1,則F=01+1?D+E+F=016+4+4D+2E+F=0,解得所以圓的方程為x2+y若過(guò)?1,1,4,0,4,2,則1+1?D+E+F=016+4D+F=016+4+4D+2E+F=0,解得所以圓的方程為x2+y故答案為:x?22+y?32=13或x?22+y?12=5或【答案】y=?34x+5【解析】圓x2+y2=1的圓心為O0,0,半徑為1,圓(x?3)2兩圓圓心距為32如圖,當(dāng)切線為l時(shí),因?yàn)閗OO1=O到l的距離d=|t|1+916=1,解得t=當(dāng)切線為m時(shí),設(shè)直線方程為kx+y+p=0,其中p>0,k<0,由題意p1+k2=1當(dāng)切線為n時(shí),易知切線方程為x=?1,故答案為:y=?34x+54題組一、直線與圓的位置關(guān)系1-1、(2023·江蘇南通·統(tǒng)考一模)已知圓SKIPIF1<0,設(shè)直線SKIPIF1<0與兩坐標(biāo)軸的交點(diǎn)分別為SKIPIF1<0,若圓SKIPIF1<0上有且只有一個(gè)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為_(kāi)_________.【答案】SKIPIF1<0【分析】根據(jù)SKIPIF1<0可得SKIPIF1<0在SKIPIF1<0的垂直平分線上,且垂直平分線與圓相切可求解.【詳解】SKIPIF1<0在SKIPIF1<0的垂直平分線上,SKIPIF1<0所以中垂線的斜率為SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,由點(diǎn)斜式得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0在圓SKIPIF1<0滿足條件的SKIPIF1<0有且僅有一個(gè),SKIPIF1<0直線SKIPIF1<0與圓相切,SKIPIF1<0,故答案為:SKIPIF1<0.1-2、(2023·江蘇南京·南京市秦淮中學(xué)??寄M預(yù)測(cè))設(shè)點(diǎn)SKIPIF1<0,若直線SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的直線與圓SKIPIF1<0有公共點(diǎn),則a的取值范圍是________.【答案】SKIPIF1<0【分析】首先求出點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱點(diǎn)SKIPIF1<0的坐標(biāo),即可得到直線SKIPIF1<0的方程,根據(jù)圓心到直線的距離小于等于半徑得到不等式,解得即可;【詳解】解:SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0所在直線即為直線SKIPIF1<0,所以直線SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0;圓SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0,依題意圓心到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;故答案為:SKIPIF1<0.1-3、(2023·江蘇徐州·徐州市第七中學(xué)??家荒#┻^(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0的直線方程為_(kāi)__________.【答案】SKIPIF1<0【分析】根據(jù)題意以SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓SKIPIF1<0,兩圓方程作差即可得直線SKIPIF1<0的方程.【詳解】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,方程化為一般式方程為SKIPIF1<0,則SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓SKIPIF1<0,其方程為SKIPIF1<0,方程化為一般式方程為SKIPIF1<0,∵SKIPIF1<0,則SKIPIF1<0是圓SKIPIF1<0與圓SKIPIF1<0的交點(diǎn),兩圓方程作差可得:SKIPIF1<0,∴直線SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0.1-4、(2023·黑龍江大慶·統(tǒng)考一模)已知直線SKIPIF1<0與圓SKIPIF1<0相離,則整數(shù)SKIPIF1<0的一個(gè)取值可以是______.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(注意:只需從SKIPIF1<0中寫一個(gè)作答即可)【分析】利用直線與圓的位置關(guān)系列出不等式組,解出整數(shù)SKIPIF1<0的范圍.【詳解】因?yàn)閳ASKIPIF1<0的圓心為SKIPIF1<0,所以圓心到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)閳ASKIPIF1<0的方程可化簡(jiǎn)為SKIPIF1<0,即半徑為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故整數(shù)SKIPIF1<0的取值可能是SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(注意:只需從SKIPIF1<0中寫一個(gè)作答即可)題組二、圓與圓的位置關(guān)系2-1、(2023·江蘇南京·南京市秦淮中學(xué)校考模擬預(yù)測(cè))圓SKIPIF1<0與圓SKIPIF1<0的交點(diǎn)為A,B,則弦AB的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【分析】先求出兩圓的公共弦方程,觀察發(fā)現(xiàn)SKIPIF1<0的圓心在公共弦上,從而得到弦AB的長(zhǎng)為圓SKIPIF1<0的直徑,求出公共弦長(zhǎng).【詳解】圓SKIPIF1<0與圓SKIPIF1<0聯(lián)立可得:公共弦的方程為SKIPIF1<0,SKIPIF1<0變形為SKIPIF1<0,故SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,而SKIPIF1<0滿足SKIPIF1<0,故弦AB的長(zhǎng)為圓SKIPIF1<0的直徑,故弦AB的長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0.2-2、(2023·江蘇泰州·泰州中學(xué)??家荒#┰O(shè)SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0________.【答案】SKIPIF1<0【分析】先求出兩圓的公共弦所在的直線方程,然后求出其中一個(gè)圓心到該直線的距離,再根據(jù)弦長(zhǎng)、半徑以及弦心距三者之間的關(guān)系求得答案.【詳解】將SKIPIF1<0和SKIPIF1<0兩式相減:得過(guò)SKIPIF1<0兩點(diǎn)的直線方程:SKIPIF1<0,則圓心SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.2-3、(2023·云南紅河·統(tǒng)考一模)古希臘數(shù)學(xué)家阿波羅尼奧斯的著作《圓錐曲線論》中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)的距離的比為常數(shù)k(SKIPIF1<0且SKIPIF1<0)的點(diǎn)的軌跡為圓,后人將這個(gè)圓稱為阿波羅尼奧斯圓.已知點(diǎn)SKIPIF1<0圓C:SKIPIF1<0上有且只有一個(gè)點(diǎn)P滿足SKIPIF1<0,則r的值是(
)A.2 B.8 C.8或14 D.2或14【答案】D【分析】先求點(diǎn)P的軌跡方程,再結(jié)合兩圓相切即可求.【詳解】設(shè)SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)并整理得點(diǎn)P的軌跡方程為SKIPIF1<0,其圓心為SKIPIF1<0半徑為6.又因?yàn)辄c(diǎn)P在圓C;SKIPIF1<0上,圓C的圓心為SKIPIF1<0,半徑為r.由題意知,兩圓相切,且圓心距為8.若兩圓外切,則有SKIPIF1<0,解得SKIPIF1<0;若兩圓內(nèi)切,則有SKIPIF1<0,解得SKIPIF1<0.故選:D.2-4、(2022·山東淄博·三模)(多選)已知圓SKIPIF1<0和圓SKIPIF1<0的交點(diǎn)為SKIPIF1<0,SKIPIF1<0,則(
)A.圓SKIPIF1<0和圓SKIPIF1<0有兩條公切線B.直線SKIPIF1<0的方程為SKIPIF1<0C.圓SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0和SKIPIF1<0使得SKIPIF1<0D.圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0的最大距離為SKIPIF1<0【答案】ABD【解析】對(duì)于A,因?yàn)閮蓚€(gè)圓相交,所以有兩條公切線,故正確;對(duì)于B,將兩圓方程作差可得SKIPIF1<0,即得公共弦SKIPIF1<0的方程為SKIPIF1<0,故B正確;對(duì)于C,直線SKIPIF1<0經(jīng)過(guò)圓SKIPIF1<0的圓心SKIPIF1<0,所以線段SKIPIF1<0是圓SKIPIF1<0的直徑,故圓SKIPIF1<0中不存在比SKIPIF1<0長(zhǎng)的弦,故C錯(cuò)誤;對(duì)于D,圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為2,圓心到直線SKIPIF1<0的距離為SKIPIF1<0,所以圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0的最大距離為SKIPIF1<0,D正確.故選:ABD.題組三、圓中的最值問(wèn)題3-1、(2022·湖北省鄂州高中高三期末)已知圓:SKIPIF1<0,過(guò)直線SKIPIF1<0:SKIPIF1<0上的一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的一條切線,切點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圓SKIPIF1<0:SKIPIF1<0中,圓心SKIPIF1<0,半徑SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立)故選:A3-2、(2023·江蘇蘇州·蘇州中學(xué)??寄M預(yù)測(cè))在圓冪定理中有一個(gè)切割線定理:如圖1所示,QR為圓O的切線,R為切點(diǎn),QCD為割線,則SKIPIF1<0.如圖2所示,在平面直角坐標(biāo)系xOy中,已知點(diǎn)SKIPIF1<0,點(diǎn)P是圓SKIPIF1<0上的任意一點(diǎn),過(guò)點(diǎn)SKIPIF1<0作直線BT垂直AP于點(diǎn)T,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先利用SKIPIF1<0和余弦定理得到SKIPIF1<0,可得SKIPIF1<0,即可求SKIPIF1<0,進(jìn)而求得SKIPIF1<0,再利用基本不等式即可得到答案【詳解】連接SKIPIF1<0,在SKIPIF1<0中,因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,平方得SKIPIF1<0,將SKIPIF1<0代入可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),取等號(hào),故選:A3-3、(2023·吉林通化·梅河口市第五中學(xué)??家荒#┰谄矫嬷苯亲鴺?biāo)系中,直線SKIPIF1<0與SKIPIF1<0軸和SKIPIF1<0軸分別交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0,SKIPIF1<0變化時(shí),點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求得A,SKIPIF1<0兩點(diǎn)坐標(biāo),根據(jù)SKIPIF1<0得到SKIPIF1<0,再結(jié)合SKIPIF1<0可得到C軌跡為動(dòng)圓,求得該動(dòng)圓圓心的方程,即可求得答案.【詳解】由SKIPIF1<0得SKIPIF1<0,故由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即點(diǎn)C軌跡為一動(dòng)圓,設(shè)該動(dòng)圓圓心為SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,代入到SKIPIF1<0中,得:SKIPIF1<0,即C軌跡的圓心在圓SKIPIF1<0上,故點(diǎn)(1,1)與該圓上的點(diǎn)SKIPIF1<0的連線的距離加上圓的半徑即為點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離的最大值,最大值為SKIPIF1<0,故選:B.3-4、(2023·重慶·統(tǒng)考三模)過(guò)直線SKIPIF1<0上任一點(diǎn)P作直線PA,PB與圓SKIPIF1<0相切,A,B為切點(diǎn),則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【詳解】由已知可得,圓心SKIPIF1<0,半徑SKIPIF1<0.因?yàn)镾KIPIF1<0為切線,所以SKIPIF1<0,所以,SKIPIF1<0四點(diǎn)共圓,SKIPIF1<0過(guò)圓心,所以,SKIPIF1<0是圓SKIPIF1<0與圓SKIPIF1<0的公共弦,所以SKIPIF1<0,且SKIPIF1<0.設(shè)四邊形SKIPIF1<0面積為SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,所以,SKIPIF1<0.顯然,當(dāng)SKIPIF1<0增大時(shí),SKIPIF1<0也增大,所以,當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0有最小值.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小,SKIPIF1<0,此時(shí)SKIPIF1<0.故答案為:SKIPIF1<0.題組四、直線與圓的綜合性問(wèn)題4-1、(2023·安徽安慶·校考一模)(多選題)將兩圓方程SKIPIF1<0作差,得到直線SKIPIF1<0的方程,則(
)A.直線SKIPIF1<0一定過(guò)點(diǎn)SKIPIF1<0B.存在實(shí)數(shù)SKIPIF1<0,使兩圓心所在直線的斜率為SKIPIF1<0C.對(duì)任意實(shí)數(shù)SKIPIF1<0,兩圓心所在直線與直線SKIPIF1<0垂直D.過(guò)直線SKIPIF1<0上任意一點(diǎn)一定可作兩圓的切線,且切線長(zhǎng)相等【答案】BCD【分析】利用分離參數(shù)法求出直線恒過(guò)的定點(diǎn)即可判斷A;利用兩圓心坐標(biāo)求斜率進(jìn)而判斷B;利用垂直直線的斜率之積為-1判斷C;設(shè)直線SKIPIF1<0上一點(diǎn)SKIPIF1<0,利用兩點(diǎn)坐標(biāo)求距離公式和勾股定理化簡(jiǎn)計(jì)算即可判斷D.【詳解】由題意知,SKIPIF1<0,兩式相減,得SKIPIF1<0,A:由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,故A錯(cuò)誤;B:SKIPIF1<0,故B正確;C:因?yàn)镾KIPIF1<0,故C正確;D:SKIPIF1<0,SKIPIF1<0,則圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,即直線SKIPIF1<0與圓SKIPIF1<0相離,SKIPIF1<0,得SKIPIF1<0,即直線SKIPIF1<0與圓SKIPIF1<0相離,所以過(guò)直線SKIPIF1<0上任一點(diǎn)可作兩圓的切線.在直線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,設(shè)點(diǎn)P到圓SKIPIF1<0的切線長(zhǎng)為SKIPIF1<0,到圓SKIPIF1<0的切線長(zhǎng)為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,故D正確.故選:BCD.4-2、(2023·江蘇南通·三模)(多選題)直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為圓上任意一點(diǎn),則(
).A.線段SKIPIF1<0最短長(zhǎng)度為SKIPIF1<0 B.SKIPIF1<0的面積最大值為SKIPIF1<0C.無(wú)論SKIPIF1<0為何值,SKIPIF1<0與圓相交 D.不存在SKIPIF1<0,使SKIPIF1<0取得最大值【答案】CD【詳解】由直線SKIPIF1<0可知SKIPIF1<0,該直線過(guò)定點(diǎn)SKIPIF1<0,且直線斜率一定存在,當(dāng)SKIPIF1<0時(shí),弦SKIPIF1<0的弦心距最長(zhǎng),則SKIPIF1<0長(zhǎng)最短為SKIPIF1<0,此時(shí)SKIPIF1<0的斜率不存在,與題意矛盾,故A錯(cuò)誤;SKIPIF1<0的面積為SKIPIF1<0,若SKIPIF1<0的面積取到最大值,則SKIPIF1<0為直角,由于SKIPIF1<0,此時(shí)SKIPIF1<0,與題意矛盾,B錯(cuò)誤;由于直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi),故無(wú)論SKIPIF1<0為何值,SKIPIF1<0與圓相交,C正確;SKIPIF1<0為圓上任意一點(diǎn),假設(shè)當(dāng)SKIPIF1<0與x軸垂直時(shí),如圖中虛線位置,此時(shí)劣弧SKIPIF1<0最短,SKIPIF1<0最大,但由于直線l斜率存在,故直線取不到圖中虛線位置,即不存在SKIPIF1<0,使SKIPIF1<0取得最大值,D正確,故選:CD4-3、(2022·山東省淄博實(shí)驗(yàn)中學(xué)高三期末)(多選題)在平面直角坐標(biāo)系SKIPIF1<0中,過(guò)直線SKIPIF1<0上任一點(diǎn)SKIPIF1<0做圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,則下列說(shuō)法正確的是()A.四邊形SKIPIF1<0為正方形時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0B.四邊形SKIPIF1<0面積的最小值為1C.SKIPIF1<0不可能為鈍角D.當(dāng)SKIPIF1<0為等邊三角形時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0【答案】ABC【解析】解:對(duì)A:設(shè)SKIPIF1<0,由題意,四邊形SKIPIF1<0為正方形時(shí),SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,選項(xiàng)A正確;對(duì)B:四邊形SKIPIF1<0面積SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選項(xiàng)B正確;對(duì)C:由題意,SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,由選項(xiàng)B知SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為銳角,所以SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)C正確;對(duì)D:當(dāng)SKIPIF1<0為等邊三角形時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,故選項(xiàng)D錯(cuò)誤;故選:ABC.1、(2022·河北保定·高三期末)若SKIPIF1<0為圓SKIPIF1<0的弦SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的方程為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圓SKIPIF1<0的圓心為SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0.故選:A2、(2022·廣東清遠(yuǎn)·高三期末)直線SKIPIF1<0被圓SKIPIF1<0截得的最短弦長(zhǎng)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】將圓化為一般方程為SKIPIF1<0,因此可知圓C的圓心為SKIPIF1<0,半徑為4,因?yàn)橹本€l過(guò)定點(diǎn)SKIPIF1<0,所以當(dāng)圓心到直線l的距離為SKIPIF1<0時(shí),直線l被圓C截得的弦長(zhǎng)最短,且最短弦長(zhǎng)為SKIPIF1<0.故選:D3、(2022·青海西寧·二模)已知圓SKIPIF1<0,圓SKIPIF1<0,若圓SKIPIF1<0平分圓SKIPIF1<0的圓周,則正數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圓SKIPIF1<0,化為SKIPIF1<0,則圓心SKIPIF1<0,兩圓方程相減可得SKIPIF1<0,即為兩圓的相交弦方程,因?yàn)閳ASKIPIF1<0平分圓SKIPIF1<0的圓周,所以圓心SKIPIF1<0在相交弦上,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故選:A4、(2023·山西·統(tǒng)考一模)經(jīng)過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)的圓與直線SKIPIF1<0的位置關(guān)系為(
)A.相交 B.相切 C.相交或相切 D.無(wú)法確定【答案】A【分析】先根據(jù)圓上三點(diǎn)坐標(biāo)求出圓的方程及圓心半徑,再根據(jù)圓心到直線的距離與半徑之間的大小關(guān)系,得出圓與直線的位置關(guān)系.【詳解】解:由題知,圓過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以該圓是以SKIPIF1<0為直徑的圓,可得圓心為SKIPIF1<0,即SKIPIF1<0,半徑SKIPIF1<0,故圓的方程為SKIPIF1<0,因?yàn)橹本€方程為:SKIPIF1<0,所以圓心到直線的距離SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以圓與直線相交,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以圓與直線相交,綜上:圓與直線的位置關(guān)系是相交.故選:A.5、(2023·河北石家莊·統(tǒng)考三模)已知直線SKIPIF1<0經(jīng)過(guò)圓SKIPIF1<0的圓心,其中SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.9 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,依題意,SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,知SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值9.故選:A6、(2021·山東日照市·高三二模)若實(shí)數(shù)滿足條件,則的范圍是()A. B. C. D.【答案】D【解析】的幾何意義即圓上的點(diǎn)到定點(diǎn)的斜率,由圖知,斜率的范圍處在圓的兩條切線斜率之間,其中AC斜率不存在,設(shè)AB的斜率為k,則AB的方程為,由切線性質(zhì)有,,解得,故的取值范圍為,故選:C7、(2023·江蘇蘇州·蘇州中學(xué)??寄M預(yù)測(cè))已知拋物線SKIPIF1<0:SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,在拋物線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,向圓SKIPIF1<0作兩條切線SKIPIF1<0和SKIPIF1<0,切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0,由已知關(guān)系,可用SKIPIF1<0點(diǎn)坐標(biāo)表示出SKIPIF1<0.在SKIPIF1<0,有SKIPIF1<0,進(jìn)而可推出SKIPIF1<0,根據(jù)SKIPIF1<0的范圍,即可得到結(jié)果.【詳解】由已知,SKIPIF1<0,SKIPIF1<0.如圖,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0中,有SKIPIF1<0SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,因?yàn)椋琒KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,又SKIPIF1<0,所以,SKIPIF1<0.所以,SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.8、(2023·云南玉溪·統(tǒng)考一模)已知直線SKIPIF1<0與圓C:SKIPIF1<0相交于點(diǎn)A,B,若SKIPIF1<0是正三角形,則實(shí)數(shù)SKIPIF1<0________【答案】SKIPIF1<0【分析】由SKIPIF1<0是正三角形得到圓心點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,從而用點(diǎn)到直線距離公式即可求解.【詳解】設(shè)圓SKIPIF1<0的半徑為SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0因?yàn)镾KIPIF1<0是正三角形,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,即SKIPIF1<0,兩邊平方得SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.9、(2023·云南·統(tǒng)考一模)若P,Q分別是拋物線SKIPIF1<0與圓SKIPIF1<0上的點(diǎn),則SKIPIF1<0的最小值為_(kāi)_______.【答案】SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0,圓心SKIPIF1<0,SKIPIF1<0的最小值即為SKIPIF1<0的最小值減去圓的半徑,求出SKIPIF1<0的最小值即可得解.【詳解】依題可設(shè)SKIPIF1<0,圓心SKIPIF1<0,根據(jù)圓外一點(diǎn)到圓上一點(diǎn)的最值求法可知,SKIPIF1<0的最小值即為SKIPIF1<0的最小值減去半徑.因?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.10、(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??家荒#┕畔ED數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn)如下結(jié)論:“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓”.在平面直角坐標(biāo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024銅門制安工程賠償合同
- 2025年度不銹鋼板材行業(yè)綠色制造與可持續(xù)發(fā)展合同范本2篇
- 2024藥品研發(fā)項(xiàng)目合作開(kāi)發(fā)與成果轉(zhuǎn)讓合同3篇
- 2025年度智能倉(cāng)儲(chǔ)物流服務(wù)合同范本二零二五年度4篇
- 《銀伯爵珠寶培訓(xùn)》課件
- 2024版商鋪轉(zhuǎn)讓協(xié)議書范本
- 中國(guó)魔芋素食品行業(yè)發(fā)展前景預(yù)測(cè)及投資方向研究報(bào)告
- 2025年水電工程安裝與智能化改造合同范本
- 2025年鞍鋼集團(tuán)工程技術(shù)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年中咨工程管理咨詢有限公司招聘筆試參考題庫(kù)含答案解析
- 導(dǎo)尿及留置導(dǎo)尿技術(shù)
- 情人合同范例
- 建筑公司勞務(wù)合作協(xié)議書范本
- 安徽省合肥市2023-2024學(xué)年高一上學(xué)期物理期末試卷(含答案)
- 《基于杜邦分析法的公司盈利能力研究的國(guó)內(nèi)外文獻(xiàn)綜述》2700字
- 儒家思想講解課程設(shè)計(jì)
- 2024年個(gè)人汽車抵押借款合同范本(四篇)
- 2024-2025學(xué)年九年級(jí)化學(xué)上冊(cè) 第二單元 單元測(cè)試卷(人教版)
- 軌道交通設(shè)備更新項(xiàng)目可行性研究報(bào)告-超長(zhǎng)期國(guó)債
- 2024-2030年中國(guó)一氧化二氮?dú)怏w行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- NB/T 11446-2023煤礦連采連充技術(shù)要求
評(píng)論
0/150
提交評(píng)論