版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重難點(diǎn)3-1三角函數(shù)中ω的取值范圍問題三角函數(shù)是高考的必考考點(diǎn),其中求ω取值范圍問題是熱門考點(diǎn)。主要結(jié)合函數(shù)的單調(diào)性、對稱性、極值與最值、零點(diǎn)等考查,需要考生能夠熟練應(yīng)用三角函數(shù)的基本性質(zhì)和圖象。根據(jù)近幾年新高考的考查情況,多在單選題與多選題中出現(xiàn),難度較大。【題型1根據(jù)圖象平移求ω取值范圍】滿分技巧結(jié)合圖象平移求ω的取值范圍的常見類型及解題思路1、平移后與原圖象重合思路1:平移長度即為原函數(shù)周期的整倍數(shù);思路2:平移前的函數(shù)=平移后的函數(shù).2、平移后與新圖象重合:平移后的函數(shù)=新的函數(shù).3、平移后的函數(shù)與原圖象關(guān)于軸對稱:平移后的函數(shù)為偶函數(shù);4、平移后的函數(shù)與原函數(shù)關(guān)于軸對稱:平移前的函數(shù)=平移后的函數(shù)SKIPIF1<0;5、平移后過定點(diǎn):將定點(diǎn)坐標(biāo)代入平移后的函數(shù)中?!纠?】(2024·云南楚雄·楚雄彝族自治州民族中學(xué)校考一模)將函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象向右平移SKIPIF1<0個(gè)單位長度后與函數(shù)SKIPIF1<0的圖象重合,則SKIPIF1<0的最小值為()A.1B.2C.4D.5【答案】D【解析】由題意可得SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值為5.故選:D.【變式1-1】(2024·全國·高三專題練習(xí))將函數(shù)SKIPIF1<0的圖象分別向左、向右各平移SKIPIF1<0個(gè)單位長度后,所得的兩個(gè)圖象對稱軸重合,則SKIPIF1<0的最小值為()A.3B.4C.5D.6【答案】A【解析】將函數(shù)SKIPIF1<0的圖象分別向左、向右各平移SKIPIF1<0個(gè)單位長度后,得到SKIPIF1<0,SKIPIF1<0.由兩圖象的對稱軸重合,可得SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故選:A.【變式1-2】(2023·河南南陽·南陽中學(xué)??既#┒x運(yùn)算:SKIPIF1<0,將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0個(gè)單位,所得圖像對應(yīng)的函數(shù)為偶函數(shù),則SKIPIF1<0的最小正值是.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0,向左平移SKIPIF1<0個(gè)單位后得到SKIPIF1<0,因?yàn)榇藭r(shí)函數(shù)是偶函數(shù),所以SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小正值,此時(shí)SKIPIF1<0.【變式1-3】(2023·全國·高三專題練習(xí))將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度后,所得到的圖象與原圖象關(guān)于x軸對稱,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.3C.6D.9【答案】B【解析】將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長度后,得到函數(shù)SKIPIF1<0的圖象,所以該圖像與SKIPIF1<0的圖象關(guān)于軸對稱,即SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小正值為3,故選:B.【變式1-4】(2023·江西宜春·高二宜豐中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,將SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位得到函數(shù)SKIPIF1<0的圖象,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0圖象的連續(xù)相鄰的三個(gè)交點(diǎn),若SKIPIF1<0是鈍角三角形,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由條件可得,SKIPIF1<0,作出兩個(gè)函數(shù)圖象,如圖:
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為連續(xù)三交點(diǎn),(不妨設(shè)SKIPIF1<0在SKIPIF1<0軸下方),SKIPIF1<0為SKIPIF1<0的中點(diǎn),.由對稱性可得SKIPIF1<0是以SKIPIF1<0為頂角的等腰三角形,SKIPIF1<0,由SKIPIF1<0,整理得SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,要使SKIPIF1<0為鈍角三角形,只需SKIPIF1<0即可,由SKIPIF1<0,所以SKIPIF1<0,故選:D.【題型2根據(jù)單調(diào)性求ω取值范圍】滿分技巧已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0),在[x1,x2]第一步:根據(jù)題意可知區(qū)間[x1即x2?x第二步:以單調(diào)遞增為例,利用ωx1+φ,ωx第三步:結(jié)合第一步求出的ω的范圍對k進(jìn)行賦值,從而求出ω(不含參數(shù))的取值范圍.【例2】(2024·云南保山·高三統(tǒng)考期末)已知SKIPIF1<0(SKIPIF1<0)在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】對于SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,結(jié)合正弦函數(shù)的單調(diào)性可知:SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0.【變式2-1】(2023·陜西商洛·鎮(zhèn)安中學(xué)校考模擬預(yù)測)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則正數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】根據(jù)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,得SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,必有SKIPIF1<0,可得SKIPIF1<0.故選:A【變式2-2】(2023·陜西漢中·高三西鄉(xiāng)縣第一中學(xué)校聯(lián)考期中)已知SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0(SKIPIF1<0)上單調(diào)遞減,所以問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0(SKIPIF1<0)上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D.【變式2-3】(2023·四川·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0)在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由題意知SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,又函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:B.【變式2-4】(2024·廣東肇慶·統(tǒng)考模擬預(yù)測)(多選)已知SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的可能取值為()A.SKIPIF1<0B.SKIPIF1<0C.2D.4【答案】BC【解析】因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,故A不可以;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,故B可以;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上遞增,故C可以;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0不單調(diào),故D不可以.故選:BC【題型3根據(jù)對稱軸求ω取值范圍】滿分技巧三角函數(shù)兩條相鄰對稱軸或兩個(gè)相鄰對稱中心之間的“水平間隔”為T2,相鄰的對稱軸和對稱中心之間的“水平間隔”為T4,也就是說,我們可以根據(jù)三角函數(shù)的對稱性來研究其周期性,進(jìn)而可以研究【例3】(2023·安徽六安·高三六安一中校考階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有兩條對稱軸,則SKIPIF1<0的取值范圍()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有兩條對稱軸,所以SKIPIF1<0,解得SKIPIF1<0,故選:B【變式3-1】(2024·云南德宏·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有兩條對稱軸,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有兩條對稱軸,所以SKIPIF1<0,解得SKIPIF1<0,故選:A【變式3-2】(2023·湖北黃岡·高三??计谥校┤艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有唯一對稱軸,則ω的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0區(qū)間SKIPIF1<0上恰有唯一對稱軸,故SKIPIF1<0,解得SKIPIF1<0,故選:D【變式3-3】(2023·廣西·模擬預(yù)測)若函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.1B.2C.3D.4【答案】D【解析】由題意,在SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)中,由于SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0可知SKIPIF1<0是函數(shù)SKIPIF1<0圖像的一條對稱軸,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為4,故選:D.【變式3-4】(2023·全國·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的圖象在SKIPIF1<0上有且僅有3條對稱軸,則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的圖象在SKIPIF1<0上有且僅有3條對稱軸,所以SKIPIF1<0,解得SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【題型4根據(jù)對稱中心求ω取值范圍】滿分技巧三角函數(shù)兩條相鄰對稱軸或兩個(gè)相鄰對稱中心之間的“水平間隔”為T2,相鄰的對稱軸和對稱中心之間的“水平間隔”為T4,也就是說,我們可以根據(jù)三角函數(shù)的對稱性來研究其周期性,進(jìn)而可以研究【例4】(2022·四川綿陽·統(tǒng)考模擬預(yù)測)若存在實(shí)數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0(SKIPIF1<0>0)的圖象的一個(gè)對稱中心為(SKIPIF1<0,0),則ω的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由于函數(shù)SKIPIF1<0的圖象的一個(gè)對稱中心為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以可得:SKIPIF1<0,故選:C【變式4-1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象的一個(gè)對稱中心的橫坐標(biāo)在區(qū)間SKIPIF1<0內(nèi),且兩個(gè)相鄰對稱中心之間的距離大于SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的圖象的兩個(gè)相鄰對稱中心之間的距離大于SKIPIF1<0,所以,函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的圖象的一個(gè)對稱中心的橫坐標(biāo)在區(qū)間SKIPIF1<0內(nèi),則SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0存在,則SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,故選:B.【變式4-2】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)不存在對稱中心,則SKIPIF1<0的取值范圍為().A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)樵赟KIPIF1<0內(nèi)不存在對稱中心,故SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0,故選:D.【變式4-3】(2023·四川·??寄M預(yù)測)已知函數(shù)SKIPIF1<0的圖象在SKIPIF1<0上恰有一條對稱軸和一個(gè)對稱中心,則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為常數(shù),不合題意,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,要使SKIPIF1<0在SKIPIF1<0上恰有一條對稱軸和一個(gè)對稱中心,則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,要使SKIPIF1<0在SKIPIF1<0上恰有一條對稱軸和一個(gè)對稱中心,則SKIPIF1<0,即SKIPIF1<0.【變式4-4】(2022·江蘇南京·高三江浦高級中學(xué)校聯(lián)考階段練習(xí))將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)周期后,所得圖象恰有SKIPIF1<0個(gè)對稱中心在區(qū)間SKIPIF1<0內(nèi),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0的周期為SKIPIF1<0,則SKIPIF1<0,則將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)周期后得到SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)樗脠D象恰有SKIPIF1<0個(gè)對稱中心在區(qū)間SKIPIF1<0內(nèi),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【題型5根據(jù)最值求ω取值范圍】滿分技巧根據(jù)三角函數(shù)的最值或值域求解參數(shù)問題是,要靈活運(yùn)用整體的思想,將問題轉(zhuǎn)化在基本函數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0上,借助函數(shù)圖象性質(zhì)來處理會更加明了。注意對SKIPIF1<0正負(fù)的討論。【例5】(2024·浙江溫州·統(tǒng)考一模)若函數(shù)SKIPIF1<0,SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】根據(jù)題意可知若SKIPIF1<0,則可得SKIPIF1<0;顯然當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,由SKIPIF1<0的值域?yàn)镾KIPIF1<0,利用三角函數(shù)圖像性質(zhì)可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D【變式5-1】(2024·廣東梅州·高三廣東梅縣東山中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)最大值和一個(gè)最小值,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0得,則SKIPIF1<0,所以由題意可得,SKIPIF1<0,解得SKIPIF1<0.故選:D【變式5-2】(2024·廣東深圳·高三統(tǒng)考期末)若函數(shù)SKIPIF1<0在SKIPIF1<0有最小值,沒有最大值,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0有最小值,沒有最大值,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D【變式5-3】(2023·山東·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)不存在最值,且在區(qū)間SKIPIF1<0上,滿足SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,則SKIPIF1<0內(nèi)不存在最值,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0中SKIPIF1<0恒成立,只需SKIPIF1<0且SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;所以SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D【變式5-4】(2023·安徽·高三池州市第一中學(xué)校聯(lián)考階段練習(xí))(多選)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位可得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有最值,則實(shí)數(shù)SKIPIF1<0的取值范圍可能為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】ACD【解析】根據(jù)題意,得到SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,因SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:ACD.【題型6根據(jù)極值求ω取值范圍】【例6】(2024·全國·模擬預(yù)測)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)極值點(diǎn),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)極值點(diǎn),即數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)最值點(diǎn),則SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0,故函數(shù)SKIPIF1<0的最值點(diǎn)為SKIPIF1<0SKIPIF1<0.不妨設(shè)SKIPIF1<0在區(qū)間SKIPIF1<0上僅有的一個(gè)最值點(diǎn)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.【變式6-1】(2023·江蘇連云港·高三統(tǒng)考期中)若函數(shù)SKIPIF1<0在SKIPIF1<0上存在唯一的極值點(diǎn),則正數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0在SKIPIF1<0上存在唯一的極值點(diǎn),則SKIPIF1<0,得到SKIPIF1<0,或SKIPIF1<0,得到SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,無解,故選:B.【變式6-2】(2023·上海奉賢·統(tǒng)考一模)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有三個(gè)極值點(diǎn),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】由已知SKIPIF1<0得SKIPIF1<0.要使函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有三個(gè)極值點(diǎn),由SKIPIF1<0圖象可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.【變式6-3】(2023·陜西西安·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上至少有3個(gè)極值點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】由題意知,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上至少有3個(gè)極值點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【變式6-4】(2023·吉林·統(tǒng)考一模)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有4個(gè)極大值點(diǎn),則正實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0,結(jié)合題設(shè),令SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0有且僅有4個(gè)極大值點(diǎn),根據(jù)正弦函數(shù)圖象及極值點(diǎn)定義知:SKIPIF1<0,則SKIPIF1<0.故選:C【題型7根據(jù)零點(diǎn)求ω取值范圍】滿分技巧已知三角函數(shù)的零點(diǎn)個(gè)數(shù)問題求ω的取值范圍對于區(qū)間長度為定值的動區(qū)間,若區(qū)間上至少含有SKIPIF1<0個(gè)零點(diǎn),需要確定含有SKIPIF1<0個(gè)零點(diǎn)的區(qū)間長度,一般和周期相關(guān),若在在區(qū)間至多含有SKIPIF1<0個(gè)零點(diǎn),需要確定包含SKIPIF1<0個(gè)零點(diǎn)的區(qū)間長度的最小值.【例7】(2023·江蘇淮安·高三馬壩高中??计谥校┮阎瘮?shù)SKIPIF1<0(SKIPIF1<0)在SKIPIF1<0上恰有2個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因?yàn)椋篠KIPIF1<0,所以:SKIPIF1<0,令:SKIPIF1<0,則得:SKIPIF1<0.因?yàn)椋篠KIPIF1<0在SKIPIF1<0上有SKIPIF1<0個(gè)零點(diǎn),所以:SKIPIF1<0,解得:SKIPIF1<0.故SKIPIF1<0的取值范圍為:SKIPIF1<0,故B項(xiàng)正確,故選:B.【變式7-1】(2024·內(nèi)蒙古鄂爾多斯·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0在區(qū)間SKIPIF1<0上恰有3個(gè)實(shí)根,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,在區(qū)間SKIPIF1<0上恰有3個(gè)實(shí)根,則SKIPIF1<0,解得SKIPIF1<0,故選:D【變式7-2】(2024·廣東汕頭·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有三個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有三個(gè)零點(diǎn),則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式7-3】(2024·全國·高三開學(xué)考試)設(shè)函數(shù)SKIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0恰好有5個(gè)零點(diǎn),則正實(shí)數(shù)SKIPIF1<0的取值范圍是【答案】SKIPIF1<0【解析】由題意得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0恰好有5個(gè)零點(diǎn),所以函數(shù)SKIPIF1<0在SKIPIF1<0上恰有5條對稱軸.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恰有5條對稱軸,如圖:所以SKIPIF1<0,解得SKIPIF1<0.【變式7-4】(2022·河南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上恰有100個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】因?yàn)楹瘮?shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,解之得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故選:C【題型8結(jié)合函數(shù)性質(zhì)綜合考查】【例8】(2024·全國·模擬預(yù)測)將函數(shù)SKIPIF1<0的圖象先向右平移SKIPIF1<0個(gè)單位長度,再把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0,縱坐標(biāo)不變,得到函數(shù)SKIPIF1<0的圖象.若函數(shù)SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由題意,函數(shù)SKIPIF1<0的圖象先向右平移SKIPIF1<0個(gè)單位長度,得到SKIPIF1<0的圖象,再把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0,縱坐標(biāo)不變,得到SKIPIF1<0的圖象.因?yàn)镾KIPIF1<0在SKIPIF1<0上沒有零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0時(shí),可得SKIPIF1<0;SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.故選:C.【變式8-1】(2024·江西上饒·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0在區(qū)間SKIPIF1<0上只取得一次最大值,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0;又因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0上只取得一次最大值,即SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0,解得SKIPIF1<0;綜上,SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.【變式8-2】(2024·山西晉城·統(tǒng)考一模)若函數(shù)SKIPIF1<0在SKIPIF1<0上至少有兩個(gè)極大值點(diǎn)和兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0的極大值點(diǎn)為SKIPIF1<0,SKIPIF1<0,則存在整數(shù)SKIPIF1<0,使得SKIPIF1<0,解得SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0在兩個(gè)相鄰的極大值點(diǎn)之間有兩個(gè)零點(diǎn),所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式8-3】(2024·遼寧大連·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0滿足下列條件:①對任意SKIPIF1<0恒成立;②SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù);③經(jīng)過點(diǎn)SKIPIF1<0的任意一條直線與函數(shù)SKIPIF1<0圖像都有交點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】方法一:由函數(shù)SKIPIF1<0可知函數(shù)周期是SKIPIF1<0,因?yàn)棰賹θ我釹KIPIF1<0恒成,所以函數(shù)的一條對稱軸是SKIPIF1<0,又因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0是單調(diào)函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為0或1.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由已知得SKIPIF1<0,因?yàn)榻?jīng)過點(diǎn)SKIPIF1<0的任意一條直線與函數(shù)SKIPIF1<0圖像都有交點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)棰賹θ我釹KIPIF1<0恒成立,所以SKIPIF1<0.所以SKIPIF1<0,由SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.方法二:SKIPIF1<0由①可知:SKIPIF1<0,即SKIPIF1<0(*)由②可知:SKIPIF1<0,因?yàn)楹瘮?shù)在SKIPIF1<0上是單調(diào)函數(shù),所以SKIPIF1<0,SKIPIF1<0,將(*)帶入化簡可得:SKIPIF1<0,所以SKIPIF1<0,由已知得SKIPIF1<0,因?yàn)榻?jīng)過點(diǎn)SKIPIF1<0的任意一條直線與函數(shù)SKIPIF1<0圖像都有交點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)棰賹θ我釹KIPIF1<0恒成立,所以SKIPIF1<0.所以SKIPIF1<0,由SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.(建議用時(shí):60分鐘)1.(2023·江蘇鹽城·高三統(tǒng)考期中)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào),所以SKIPIF1<0,∴SKIPIF1<0,故選:D.2.(2023·陜西漢中·高三校聯(lián)考期中)已知SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0SKIPIF1<0上單調(diào)遞減,∴問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0故選:D.3.(2024·黑龍江哈爾濱·高三哈爾濱市第六中學(xué)校校聯(lián)考期末)設(shè)函數(shù)SKIPIF1<0,已知方程SKIPIF1<0在SKIPIF1<0上有且僅有2個(gè)根,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由題意可知,SKIPIF1<0的圖象與直線SKIPIF1<0在SKIPIF1<0上僅有2個(gè)交點(diǎn),由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,故選:C4.(2023·黑龍江哈爾濱·高三哈爾濱市第十三中學(xué)校??计谥校┤艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上既有最大值,又有最小值,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44876-2024外科植入物骨科植入物的清潔度通用要求
- 亞運(yùn)會應(yīng)急預(yù)案
- 肺性腦病的業(yè)務(wù)學(xué)習(xí)
- 移動設(shè)備管理與安全
- 銀行述職報(bào)告2024年
- 皮膚科護(hù)士述職報(bào)告
- 高中生物人類遺傳病試題
- 機(jī)器人安全培訓(xùn)
- 糖尿病飲食資料
- 社交渠道規(guī)劃
- 中小學(xué)古詩詞首
- 《規(guī)劃每一天》教案2021
- 草莓創(chuàng)意主題實(shí)用框架模板ppt
- 高處作業(yè)吊籃定期檢修與保養(yǎng)項(xiàng)目表
- 山大口腔頜面外科學(xué)課件第5章 口腔種植外科-1概論、口腔種植的生物學(xué)基礎(chǔ)
- 部編人教版六年級上冊語文 第25課 少年閏土 教學(xué)課件
- 系統(tǒng)辨識課件:第4章 數(shù)學(xué)模型的最小二乘法辨識
- 【人教版】高一政治必修2導(dǎo)學(xué)案:政治生活7.1《處理民族關(guān)系的原則:平等、團(tuán)結(jié)、共同繁榮》
- 第六屆全國儀表技能大賽DCS實(shí)操題1009a
- 土壤分析技術(shù)規(guī)范(第二版)
- 木材力學(xué)基本性質(zhì)和概述
評論
0/150
提交評論