2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文A卷)含解析_第1頁
2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文A卷)含解析_第2頁
2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文A卷)含解析_第3頁
2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文A卷)含解析_第4頁
2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文A卷)含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年吉林省白山市第七中學(xué)高三下學(xué)期期末考試數(shù)學(xué)試題(文,A卷)考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.2.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.53.臺(tái)球是一項(xiàng)國際上廣泛流行的高雅室內(nèi)體育運(yùn)動(dòng),也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺(tái)球技術(shù)表演節(jié)目中,在臺(tái)球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個(gè)目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm4.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.5.已知是虛數(shù)單位,若,則()A. B.2 C. D.36.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.8.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.9.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且10.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.211.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.函數(shù)的圖像大致為().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(-4,3),=(6,m),且,則m=__________.14.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.15.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________16.邊長為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三角形中,角,,的對(duì)邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.18.(12分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.19.(12分)已知函數(shù).(1)解不等式;(2)使得,求實(shí)數(shù)的取值范圍.20.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.21.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.22.(10分)如圖,設(shè)橢圓:,長軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過作直線交拋物線于,兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.2.D【解析】

由對(duì)數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.3.D【解析】

過點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來,根據(jù),列方程求出,進(jìn)而可得正方形的邊長.【詳解】過點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)椋瑒t,整理化簡得,又,得,.即該正方形的邊長為.故選:D.本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.4.A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.5.A【解析】

直接將兩邊同時(shí)乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時(shí)乘以,得故選:A考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.6.A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.7.A【解析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.8.A【解析】

,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9.B【解析】由且可得,故選B.10.D【解析】

分析可得,再去絕對(duì)值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長,所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.11.B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.12.A【解析】

本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.8.【解析】

利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.14.【解析】

點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.15.1【解析】

作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑桑茫鞒隹尚杏?,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,此時(shí)取得最大值。由,解得,代入直線,得。本題主要考查簡單的線性規(guī)劃問題的解法——平移法。16.【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長.故答案為:.本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問題,屬綜合中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因?yàn)?,所以;(Ⅱ)因?yàn)椋?,因?yàn)椋?,由正弦定理得,所?本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.18.(1);(2)見解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點(diǎn)的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時(shí);;時(shí).(2)①過點(diǎn),的直線為,則令,,,.②過點(diǎn),的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點(diǎn)的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點(diǎn)的橫坐標(biāo)依次為,.本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.19.(1);(2)或.【解析】

(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實(shí)數(shù)的取值范圍.【詳解】(1)因?yàn)椋援?dāng)時(shí),;當(dāng)時(shí),無解;當(dāng)時(shí),;綜上,不等式的解集為;(2),又,或.本題考查分段函數(shù),絕對(duì)值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問題,屬于中檔題.20.(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.21.(1);(2)①證明見解析;②能,.【解析】

(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(?。瑒t直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.22.(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】

(Ⅰ)由已知求出拋物線的焦點(diǎn)坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線方程為,設(shè),把直線方程代入拋物線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論