版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數(shù)列的前項和為,若,則的值為()A. B. C. D.2.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.3.在平行四邊形中,若則()A. B. C. D.4.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉一周后形成的幾何體的表面積為()A. B. C. D.5.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.6.設全集,集合,.則集合等于()A. B. C. D.7.設復數(shù),則=()A.1 B. C. D.8.要排出高三某班一天中,語文、數(shù)學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.9.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.810.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.11.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標為_______.14.已知集合A=,B=,若AB中有且只有一個元素,則實數(shù)a的值為_______.15.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.16.在的展開式中的系數(shù)為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.18.(12分)已知矩陣,.求矩陣;求矩陣的特征值.19.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù).).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.20.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.21.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.22.(10分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應用,解答的關鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎題.2.B【解析】命題p:,為,又為真命題的充分不必要條件為,故3.C【解析】
由,,利用平面向量的數(shù)量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).4.B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.5.D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.6.A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.7.A【解析】
根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎題.8.C【解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午;②語文和數(shù)學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學都一個安排在上午,一個安排在下午.語文和數(shù)學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數(shù)原理的應用,屬于中等題.9.C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.10.A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.11.B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設,根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.12.D【解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.或【解析】
設出三點的坐標,結合等差數(shù)列的性質、線段垂直平分線的性質、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設,由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應用,考查了等差數(shù)列的性質,考查了數(shù)學運算能力.14.2【解析】
利用AB中有且只有一個元素,可得,可求實數(shù)a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質是存同去異,側重考查數(shù)學運算的核心素養(yǎng).15.【解析】
根據(jù)題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.16.2【解析】
首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.18.;,.【解析】
由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于??碱}.19.(1)極坐標方程為,點的極坐標為(2)【解析】
(1)利用極坐標方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.【點睛】本題考查極坐標方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.20.(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標方程化為,根據(jù)極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數(shù)方程代入曲線的直角坐標方程,根據(jù)參數(shù)的幾何意義可知,利用韋達定理求得結果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數(shù)分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達定理來進行求解.21.(1)1(2)【解析】
(1)求得和,由,,得,令,令導數(shù)求得函數(shù)的單調性,利用,即可求解.(2)解法一:令,利用導數(shù)求得的單調性,轉化為,令(),利用導數(shù)得到的單調性,分類討論,即可求解.解法二:可利用導數(shù),先證明不等式,,,,令(),利用導數(shù),分類討論得出函數(shù)的單調性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調遞增,又,所以當時,,單調遞增;當時,,單調遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調遞增;當時,,單調遞減;故.令(),則.(i)若時,,在單調遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調遞增,當時,,單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險業(yè)界巨頭之路
- 化學-遼寧省丹東市五校協(xié)作體2024-2025學年高三上學期12月聯(lián)考試卷試題和答案
- IMT-2020(5G)推進組:5G-Advanced技術路線及產業(yè)推進研究
- 電商新員工入職培訓
- 生產員工安全意識培訓
- 二型糖尿病查房流程
- 火災事故調查與案例分析
- 創(chuàng)新型教育產品的文案與視覺設計策略
- 暢享未來少兒醫(yī)療保險
- 直播知識學習的聲音與語言技巧
- 業(yè)務員手冊內容
- 計劃分配率和實際分配率_CN
- pH值的測定方法
- 《紅燈停綠燈行》ppt課件
- 小學語文作文技巧六年級寫人文章寫作指導(課堂PPT)
- 《APQP培訓資料》
- PWM脈寬直流調速系統(tǒng)設計及 matlab仿真驗證
- 家具銷售合同,家居訂購訂貨協(xié)議A4標準版(精編版)
- 食品加工與保藏課件
- 有功、無功控制系統(tǒng)(AGCAVC)技術規(guī)范書
- 儲罐施工計劃
評論
0/150
提交評論