版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年山東省聊城市某重點(diǎn)高中高三畢業(yè)生3月學(xué)習(xí)質(zhì)量檢測(cè)試題數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.2.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.3.已知集合,集合,則()A. B. C. D.4.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.5.網(wǎng)格紙上小正方形邊長(zhǎng)為1單位長(zhǎng)度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.46.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件7.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.8.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.9.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.10.為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說(shuō)法:①越小,則國(guó)民分配越公平;②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國(guó)家某年的勞倫茨曲線近似為,則;④若某國(guó)家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④11.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.12.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),曲線與直線相交,若存在相鄰兩個(gè)交點(diǎn)間的距離為,則可取到的最大值為__________.14.若展開式的二項(xiàng)式系數(shù)之和為64,則展開式各項(xiàng)系數(shù)和為__________.15.某高校組織學(xué)生辯論賽,六位評(píng)委為選手成績(jī)打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.16.若函數(shù)在區(qū)間上恰有4個(gè)不同的零點(diǎn),則正數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過(guò)點(diǎn)時(shí),.(1)求拋物線的方程;(2)若,直線與交于點(diǎn),,求直線的斜率.18.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過(guò)點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說(shuō)明理由.19.(12分)為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).(1)求樣本平均數(shù)的大??;(2)若一個(gè)零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.20.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.21.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.22.(10分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)圖象分析變化過(guò)程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.2.A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.3.C【解析】
求出集合的等價(jià)條件,利用交集的定義進(jìn)行求解即可.【詳解】解:∵,,∴,故選:C.本題主要考查了對(duì)數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題.4.D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問(wèn)題.5.A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長(zhǎng)度如上圖所以所以所以故選:A本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對(duì)本題可以利用長(zhǎng)方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.6.B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問(wèn)題的能力和計(jì)算能力,難度較易.7.D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.8.D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.9.B【解析】
畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).10.A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國(guó)民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)?,所以,所以③錯(cuò)誤.對(duì)于④,因?yàn)?,所以,所以④正確.故選A.11.A【解析】
根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.12.D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)椋忠驗(yàn)?,且AB,所以.故選:D本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
由于曲線與直線相交,存在相鄰兩個(gè)交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.14.1【解析】
由題意得展開式的二項(xiàng)式系數(shù)之和求出的值,然后再計(jì)算展開式各項(xiàng)系數(shù)的和.【詳解】由題意展開式的二項(xiàng)式系數(shù)之和為,即,故,令,則展開式各項(xiàng)系數(shù)的和為.故答案為:本題考查了二項(xiàng)展開式的二項(xiàng)式系數(shù)和項(xiàng)的系數(shù)和問(wèn)題,需要運(yùn)用定義加以區(qū)分,并能夠運(yùn)用公式和賦值法求解結(jié)果,需要掌握解題方法.15.【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個(gè)數(shù)為83,85,87,95,且這四個(gè)數(shù)的平均數(shù),這四個(gè)數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.本題主要考查莖葉圖的識(shí)別和統(tǒng)計(jì)量的計(jì)算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).16.;【解析】
求出函數(shù)的零點(diǎn),讓正數(shù)零點(diǎn)從小到大排列,第三個(gè)正數(shù)零點(diǎn)落在區(qū)間上,第四個(gè)零點(diǎn)在區(qū)間外即可.【詳解】由,得,,,,∵,∴,解得.故答案為:.本題考查函數(shù)的零點(diǎn),根據(jù)正弦函數(shù)性質(zhì)求出函數(shù)零點(diǎn),然后題意,把正數(shù)零點(diǎn)從小到大排列,由于0已經(jīng)是一個(gè)零點(diǎn),因此只有前3個(gè)零點(diǎn)在區(qū)間上.由此可得的不等關(guān)系,從而得出結(jié)論,本題解法屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長(zhǎng)公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點(diǎn)的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說(shuō)明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因?yàn)橹本€的斜率為1,則,所以,因?yàn)?,所以線段中點(diǎn)的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18.(1)見解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過(guò)圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的軌跡,進(jìn)而求出方程;(1)過(guò)點(diǎn)且斜率為的直線方程為,設(shè),,聯(lián)立直線方程和橢圓方程,根據(jù)韋達(dá)定理以及,,可得,根據(jù)其為定值,則有,進(jìn)而可得結(jié)果.【詳解】(1)因?yàn)?,,所以,因?yàn)閳A的半徑為,圓的半徑為,又因?yàn)?,所以,即,所以圓與圓有公共點(diǎn),設(shè)公共點(diǎn)為,因此,所以點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,所以,,,即軌跡的方程為;(1)過(guò)點(diǎn)且斜率為的直線方程為,設(shè),由消去得到,則,,①因?yàn)?,,所以,將①式代入整理得因?yàn)?,所以?dāng)時(shí),即時(shí),.即存在實(shí)數(shù)使得.本題考查橢圓定理求橢圓方程,考查橢圓中的定值問(wèn)題,靈活應(yīng)用韋達(dá)定理進(jìn)行計(jì)算是關(guān)鍵,并且觀察出取定值的條件也很重要,考查了學(xué)生分析能力和計(jì)算能力,是中檔題.19.(1)66.5(2)屬于【解析】
(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件本題主要考查頻率分布圖中平均數(shù)的計(jì)算和應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20.(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個(gè)解,所以AB的垂直平分線與x軸的交點(diǎn)C為定點(diǎn),且點(diǎn)C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個(gè)實(shí)根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時(shí)等號(hào)成立,所以S△ABC的最大值為.此題考查根據(jù)焦點(diǎn)和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 細(xì)毛材料生物降解-洞察分析
- 心理干預(yù)技術(shù)評(píng)估-洞察分析
- 《人力與組織發(fā)展》課件
- 亞硝酸鈉毒性研究進(jìn)展-洞察分析
- 微創(chuàng)技術(shù)在牙科手術(shù)中的應(yīng)用-洞察分析
- 約數(shù)應(yīng)用案例分析-洞察分析
- 網(wǎng)絡(luò)釣魚攻擊手段-洞察分析
- 條口識(shí)別產(chǎn)業(yè)應(yīng)用-洞察分析
- 藥物現(xiàn)代工藝優(yōu)化探討-洞察分析
- 營(yíng)養(yǎng)健康食品評(píng)價(jià)-洞察分析
- 康復(fù)科建設(shè)可行性方案
- 白雪公主 臺(tái)詞
- 課題五-車刀簡(jiǎn)介(車刀種類及用途)
- 自身免疫性疾病實(shí)驗(yàn)研究
- 檢驗(yàn)與臨床溝通與案例分析
- 《發(fā)電廠風(fēng)煙系統(tǒng)》課件
- 高二歷史期末復(fù)習(xí)核心知識(shí)串講(選擇性必修1第1-10課) 【知識(shí)精講精研】高二歷史上學(xué)期期末考點(diǎn)大串講(統(tǒng)編版)
- 地鐵運(yùn)營(yíng)公司工務(wù)線路質(zhì)量評(píng)定標(biāo)準(zhǔn)
- 歷史七年級(jí)上學(xué)期期末試卷含答案
- 【基于抖音短視頻的營(yíng)銷策略分析文獻(xiàn)綜述2800字(論文)】
- 新疆大學(xué)高數(shù)上冊(cè)歷年試題
評(píng)論
0/150
提交評(píng)論