版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年新疆巴州第三中學高三下學期模擬試題(二)數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.2.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb3.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內外的觀眾評分的平均數(shù)為,所有嘉賓與場內外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.4.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.5.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調遞增的是()A. B. C. D.6.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.7.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值8.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.9.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.已知是偶函數(shù),在上單調遞減,,則的解集是A. B.C. D.11.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.12.若函數(shù)在時取得最小值,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)(為虛數(shù)單位),則的模為____.14.設全集,,,則______.15.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為__________.16.在中,,是的角平分線,設,則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.18.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.19.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.20.(12分)已知函數(shù),.(1)當時,討論函數(shù)的零點個數(shù);(2)若在上單調遞增,且求c的最大值.21.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.22.(10分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網絡知識問卷調查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.2.B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質【名師點睛】比較冪或對數(shù)值的大小,若冪的底數(shù)相同或對數(shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或對數(shù)函數(shù)的單調性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.3.C【解析】
計算出、,進而可得出結論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎題.4.B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:本題考查正弦定理的應用,余弦函數(shù)的性質的應用,屬于中檔題.5.C【解析】
結合基本初等函數(shù)的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調,不符合題意;C:為偶函數(shù),且在上單調遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.本小題主要考查函數(shù)的單調性和奇偶性,屬于基礎題.6.A【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)相等的條件列式求解.【詳解】,,得,..故選:.本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.7.C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關系以及四面體的體積公式,可得結果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質定理,中檔題.8.A【解析】
函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.本題考查復合函數(shù)的零點.考查轉化與化歸思想,函數(shù)零點轉化為方程的解,方程的解再轉化為研究函數(shù)的性質,本題考查了學生分析問題解決問題的能力.9.B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出?!驹斀狻吭O對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B。本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。10.D【解析】
先由是偶函數(shù),得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數(shù),所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.本題主要考查由函數(shù)的性質解對應不等式,熟記函數(shù)的奇偶性、對稱性、單調性等性質即可,屬于??碱}型.11.C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C本小題考查數(shù)列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.12.D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】,所以.14.【解析】
先求出集合,,然后根據(jù)交集、補集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.本題主要考查集合的交集、補集運算,屬于基礎題.15.【解析】
設,,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數(shù)列,設,,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.16.【解析】
設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)直線l的斜率為或【解析】
(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯(lián)立,轉化為,借助向量的數(shù)量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.18.(1)證明見解析(2)證明見解析【解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關鍵在于熟練掌握相關判定定理,找出平行關系和垂直關系證明.19.,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.本題主要考查導數(shù)在函數(shù)當中的應用,屬于中檔題.20.(1)見解析(2)2【解析】
(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數(shù)可得,則,即,再設,利用導函數(shù)求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.本題考查利用導函數(shù)研究函數(shù)的零點問題,考查利用導函數(shù)求最值,考查運算能力與分類討論思想.21.(1),;(2)證明見解析.【解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯(lián)立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公室租賃合同模板
- 招標文件范本的標準制作流程
- 軟件采購合同樣式
- 碎石采購協(xié)議書格式
- 創(chuàng)新服務采購協(xié)議
- 租房合同解除協(xié)議書范文
- 工程分包合同中的勞務培訓計劃與實施
- 蔬菜購銷合同的解除注意事項
- 礦機設備購買合同示范
- 三方協(xié)議服務共贏
- 應用統(tǒng)計學實驗指導書
- 物流學概論(第五版)第10章-區(qū)域物流教材課件
- 外研版高一英語必修一全冊練習題(附答案)
- 《幼兒衛(wèi)生保健基礎》第五章 特殊幼兒衛(wèi)生保健
- 最新國家開放大學-《財務管理》-機考復習資料-附答案
- 產科品管圈降低產后乳房脹痛發(fā)生率
- 《物理因子療法》考試復習題庫(帶答案)
- 2023屆高考作文模擬寫作-“引體向上”與“低姿匍匐”課件
- 項目七-質譜法及其在食品分析中的應用001課件
- 國家社科基金項目申報:經驗與體會課件
- 《醫(yī)學影像成像原理》考試復習題庫(匯總版)
評論
0/150
提交評論