




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第12講導(dǎo)數(shù)的綜合應(yīng)用學(xué)校____________姓名____________班級(jí)____________一、知識(shí)梳理1、不等式恒成立(1)分離變量.構(gòu)造函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.(2)a≥f(x)恒成立?a≥f(x)max;a≤f(x)恒成立?a≤f(x)min;a≥f(x)能成立?a≥f(x)min;a≤f(x)能成立?a≤f(x)max.分類(lèi)討論求參數(shù):根據(jù)不等式恒成立求參數(shù)范圍的關(guān)鍵是將恒成立問(wèn)題轉(zhuǎn)化為最值問(wèn)題,此類(lèi)問(wèn)題關(guān)鍵是對(duì)參數(shù)分類(lèi)討論,在參數(shù)的每一段上求函數(shù)的最值,并判斷是否滿(mǎn)足題意,若不滿(mǎn)足題意,只需找一個(gè)值或一段內(nèi)的函數(shù)值不滿(mǎn)足題意即可.雙變量恒成立含參不等式能成立問(wèn)題(有解問(wèn)題)可轉(zhuǎn)化為恒成立問(wèn)題解決,常見(jiàn)的轉(zhuǎn)化有:(1)?x1∈M,?x2∈N,f(x1)>g(x2)?f(x)min>g(x)min.(2)?x1∈M,?x2∈N,f(x1)>g(x2)?f(x)min>g(x)max.(3)?x1∈M,?x2∈N,f(x1)>g(x2)?f(x)max>g(x)min.(4)?x1∈M,?x2∈N,f(x1)>g(x2)?f(x)max>g(x)max.2、利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)常用方法(1)構(gòu)造函數(shù)g(x),利用導(dǎo)數(shù)研究g(x)的性質(zhì),結(jié)合g(x)的圖像,判斷函數(shù)零點(diǎn)的個(gè)數(shù).(2)利用零點(diǎn)存在定理,先判斷函數(shù)在某區(qū)間有零點(diǎn),再結(jié)合圖像與性質(zhì)確定函數(shù)有多少個(gè)零點(diǎn).3、構(gòu)造函數(shù)證明不等式(1)五個(gè)常見(jiàn)變形:xex=ex+lnx,eq\f(ex,x)=ex-lnx,eq\f(x,ex)=elnx-x,x+lnx=lnxex,x-lnx=lneq\f(ex,x).(2)三種基本模式①積型:aea≤blnbeq\o(→,\s\up17(三種同構(gòu)方式))eq\b\lc\{(\a\vs4\al\co1(同左:aea≤(lnb)elnb……f(x)=xex,,同右:ealnea≤blnb……f(x)=xlnx,,取對(duì):a+lna≤lnb+ln(lnb)……f(x)=x+lnx,))②商型:eq\f(ea,a)<eq\f(b,lnb)eq\o(→,\s\up17(三種同構(gòu)方式))eq\b\lc\{(\a\vs4\al\co1(同左:\f(ea,a)<\f(elnb,lnb)……f(x)=\f(ex,x),,同右:\f(ea,lnea)<\f(b,lnb)……f(x)=\f(x,lnx),,取對(duì):a-lna<lnb-ln(lnb)……f(x)=x-lnx,))③和差型:ea±a>b±lnbeq\o(→,\s\up17(兩種同構(gòu)方式))eq\b\lc\{(\a\vs4\al\co1(同左:ea±a>elnb±lnb……f(x)=ex±x,,同右:ea±lnea>b±lnb……f(x)=x±lnx.))考點(diǎn)和典型例題1、不等式恒成立【典例1-1】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則實(shí)數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】???1,??2∈??,使得SKIPIF1<0成立,等價(jià)于SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增,所以當(dāng)x=-1時(shí),SKIPIF1<0取得最小值SKIPIF1<0;當(dāng)x=-1時(shí)SKIPIF1<0取得最大值為SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)a的取值范圍是SKIPIF1<0故選:B.【典例1-2】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0,若對(duì)任意兩個(gè)不等的正實(shí)數(shù)SKIPIF1<0都有SKIPIF1<0成立,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】對(duì)任意兩個(gè)不等的正實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0恒成立,即為SKIPIF1<0時(shí),SKIPIF1<0恒成立.所以SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0而SKIPIF1<0,則SKIPIF1<0.故選:A.【典例1-3】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,顯然SKIPIF1<0為增函數(shù),則原命題等價(jià)于SKIPIF1<0SKIPIF1<0SKIPIF1<0,又令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0,所以SKIPIF1<0,即得SKIPIF1<0.故選:B【典例1-4】(2022·全國(guó)·高三專(zhuān)題練習(xí))設(shè)實(shí)數(shù)SKIPIF1<0,若不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則t的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,故SKIPIF1<0,問(wèn)題轉(zhuǎn)化為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞增,在SKIPIF1<0遞減,故SKIPIF1<0(e)SKIPIF1<0,故SKIPIF1<0.故選:B.【典例1-5】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則實(shí)數(shù)a的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0與1的大小不定,但當(dāng)實(shí)數(shù)a最小時(shí),只需考慮其為負(fù)數(shù)的情況,此時(shí)SKIPIF1<0因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,兩邊取對(duì)數(shù)得:SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0故a的最小值是SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從四個(gè)選項(xiàng)均為負(fù),考慮SKIPIF1<0,此時(shí)有SKIPIF1<0,SKIPIF1<0兩邊取對(duì)數(shù)得:SKIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無(wú)最大值,此時(shí)無(wú)解,綜上:故a的最小值是SKIPIF1<0.故選:C2、利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)【典例2-1】(2022·河南·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象恰有3個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)楹瘮?shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象恰有3個(gè)交點(diǎn),所以SKIPIF1<0有3個(gè)根.經(jīng)驗(yàn)證:x=1為其中一個(gè)根.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0可化為SKIPIF1<0,及SKIPIF1<0i.SKIPIF1<0或SKIPIF1<0時(shí),方程有且僅有一個(gè)根x=-1;ii.SKIPIF1<0且SKIPIF1<0時(shí),方程SKIPIF1<0有兩個(gè)根,SKIPIF1<0或x=-1.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0可化為SKIPIF1<0.令SKIPIF1<0,(x>0).則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單減.因?yàn)镾KIPIF1<0,所以SKIPIF1<0有且只有1個(gè)根x=1.所以需要SKIPIF1<0有兩個(gè)根SKIPIF1<0或x=-1,SKIPIF1<0才有3個(gè)根,此時(shí)SKIPIF1<0且SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有且僅有一個(gè)根x=-1,所以只需SKIPIF1<0在SKIPIF1<0有2個(gè)根.此時(shí)SKIPIF1<0.在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單減;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單增.且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以只需SKIPIF1<0,即SKIPIF1<0,亦即SKIPIF1<0.記SKIPIF1<0.則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,即SKIPIF1<0(當(dāng)且僅當(dāng)x=1時(shí)取等號(hào)).所以要使SKIPIF1<0成立,只需SKIPIF1<0,解得:SKIPIF1<0.所以SKIPIF1<0且SKIPIF1<0.綜上所述:實(shí)數(shù)k的取值范圍是SKIPIF1<0.故選:B【典例2-2】(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意得:SKIPIF1<0,則SKIPIF1<0,問(wèn)題轉(zhuǎn)化為y=m和SKIPIF1<0有2個(gè)交點(diǎn),而SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞增,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞減,當(dāng)x趨于正無(wú)窮大時(shí),SKIPIF1<0無(wú)限接近于0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象,如圖所示:觀察圖象得:函數(shù)SKIPIF1<0和SKIPIF1<0的圖象有2個(gè)不同的交點(diǎn)時(shí),實(shí)數(shù)SKIPIF1<0.故選:D.【典例2-3】(2022·陜西·寶雞中學(xué)模擬預(yù)測(cè))已知曲線(xiàn)SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上有兩個(gè)公共點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】曲線(xiàn)SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上有兩個(gè)公共點(diǎn),即SKIPIF1<0在區(qū)間SKIPIF1<0上有兩根,設(shè)SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上有兩根則SKIPIF1<0故選:A【典例2-4】(2022·江西·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0)有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(
)A.(0,SKIPIF1<0) B.(0,SKIPIF1<0) C.(0,1) D.(0,e)【答案】A【詳解】令SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,h(x)在(-∞,0)上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,h(x)在(0,+∞)上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,所以g(x)在R上單調(diào)遞減,又SKIPIF1<0,g(0)=SKIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0,所以方程SKIPIF1<0有兩個(gè)異于SKIPIF1<0的實(shí)數(shù)根,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,k(x)在(-∞,1)上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,k(x)在(1,+∞)上單調(diào)遞減,且SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的部分圖象大致如圖所示,由圖知SKIPIF1<0,故選:A.【典例2-5】(2022·浙江·赫威斯育才高中模擬預(yù)測(cè))已知SKIPIF1<0,函SKIPIF1<0,若函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn),SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖所示:由圖象知:當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩不等實(shí)根,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有一個(gè)實(shí)根;令SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖所示:由圖象知:當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0在SKIPIF1<0恰有一個(gè)實(shí)根,即此時(shí)SKIPIF1<0有三個(gè)不同的零點(diǎn),綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B3、構(gòu)造函數(shù)證明不等式【典例3-1】(2021·重慶合川·高二階段練習(xí))已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0,證明:SKIPIF1<0;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有一個(gè)極值,求a的值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【解析】(1)由題設(shè)SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0,得證.(2)由題設(shè)SKIPIF1<0在SKIPIF1<0有且僅有一個(gè)變號(hào)零點(diǎn),所以SKIPIF1<0在SKIPIF1<0上有且僅有一個(gè)解,令SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上遞增,在SKIPIF1<0上遞減,故極大值SKIPIF1<0,極小值SKIPIF1<0,SKIPIF1<0,要使SKIPIF1<0在SKIPIF1<0上與SKIPIF1<0有一個(gè)交點(diǎn),則SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.經(jīng)驗(yàn)證,SKIPIF1<0或SKIPIF1<0時(shí)SKIPIF1<0對(duì)應(yīng)零點(diǎn)不變號(hào),而SKIPIF1<0時(shí)SKIPIF1<0對(duì)應(yīng)零點(diǎn)為變號(hào)零點(diǎn),所以SKIPIF1<0.【典例3-2】(2022·浙江·鎮(zhèn)海中學(xué)模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0(1)求證:函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn)SKIPIF1<0;(2)若方程SKIPIF1<0有且僅有一個(gè)正數(shù)解SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)解:由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,由零點(diǎn)存在定理可知,函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn)SKIPIF1<0.(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,又由當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有且僅有一個(gè)正數(shù)解SKIPIF1<0,現(xiàn)證不等式左側(cè):SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0在SKIPIF1<0上恒成立,只需證SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,解得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)合作社的人才培訓(xùn)機(jī)制-全面剖析
- 電能存儲(chǔ)技術(shù)研究-全面剖析
- 企業(yè)信息安全管理體系建設(shè)-全面剖析
- 數(shù)字貨幣通脹預(yù)測(cè)模型-全面剖析
- 區(qū)塊鏈網(wǎng)絡(luò)動(dòng)態(tài)結(jié)構(gòu)-全面剖析
- 國(guó)際貿(mào)易中的合同執(zhí)行保障措施
- 納米技術(shù)在保暖材料中的應(yīng)用現(xiàn)狀與挑戰(zhàn)-全面剖析
- 2025-2030豆腐干市場(chǎng)前景分析及投資策略與風(fēng)險(xiǎn)管理研究報(bào)告
- 程序員創(chuàng)業(yè)融資模式-全面剖析
- 2025-2030葡萄糖注射液市場(chǎng)發(fā)展分析及行業(yè)投資戰(zhàn)略研究報(bào)告
- 民族相處有禮儀ppt
- 保健食品安全管理制度69094
- 體育與健康課程教學(xué)評(píng)價(jià)(汪曉贊)1課件
- Python程序設(shè)計(jì)教程PPT完整全套教學(xué)課件
- 部編人教版二年級(jí)道德與法治下冊(cè)同步練習(xí)(全冊(cè))
- 第九講 全面依法治國(guó)PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 7.4.2 超幾何分布 課件(26張)
- 畢業(yè)設(shè)計(jì)(論文)-ZJ-600型羅茨真空泵設(shè)計(jì)
- 2022-2023學(xué)年湖北省武漢市重點(diǎn)中學(xué)5G聯(lián)合體高一(下)期中英語(yǔ)試卷及參考答案
- 生產(chǎn)異常處理流程圖來(lái)料工藝及制程
- 有機(jī)朗肯循環(huán)(ORC)中低溫余熱發(fā)電與工業(yè)余熱利用
評(píng)論
0/150
提交評(píng)論