版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ChapterOneTheMarketTheTheoryofEconomicsdoesnot
furnishabodyofsettledconclusions
immediatelyapplicabletopolicy.Itis
amethodratherthanadoctrine,an
apparatusofthemind,atechniqueof
thinkingwhichhelpsitspossessorto
drawcorrectconclusions
---JohnMaynardKeynesEconomicModelingWhatcauseswhatineconomicsystems?Atwhatlevelofdetailshallwemodelaneconomicphenomenon?Whichvariablesaredeterminedoutsidethemodel(exogenous)andwhicharetobedeterminedbythemodel(endogenous)?ModelingtheApartmentMarketHowareapartmentrentsdetermined?Supposeapartmentsarecloseordistant,butotherwiseidenticaldistantapartmentsrentsareexogenousandknownmanypotentialrentersandlandlordsModelingtheApartmentMarketWhowillrentcloseapartments?Atwhatprice?Willtheallocationofapartmentsbedesirableinanysense?
Howcanweconstructaninsightfulmodeltoanswerthesequestions?EconomicModelingAssumptionsTwobasicpostulates:RationalChoice:Eachpersontriestochoosethebestalternativeavailabletohimorher.Equilibrium:Marketpriceadjustsuntilquantitydemandedequalsquantitysupplied.ModelingApartmentDemandDemand:Supposethemostanyonepersoniswillingtopaytorentacloseapartmentis$500/month.Then p=$500
QD=1.Supposethepricehastodropto$490beforea2ndpersonwouldrent.Then p=$490
QD=2.ModelingApartmentDemandTheloweristherentalratep,thelargeristhequantityofcloseapartmentsdemanded
p
QD
.Thequantitydemandedvs.pricegraphisthemarketdemandcurveforcloseapartments.MarketDemandCurveforApartmentspQDModelingApartmentSupplySupply:Ittakestimetobuildmorecloseapartmentssointhisshort-runthequantityavailableisfixed(atsay100).MarketSupplyCurveforApartmentspQS100CompetitiveMarketEquilibrium“l(fā)ow”rentalprice
quantitydemandedofcloseapartmentsexceedsquantityavailable
pricewillrise.“high”rentalprice
quantitydemandedlessthanquantityavailable
pricewillfall.CompetitiveMarketEquilibriumQuantitydemanded=quantityavailable
pricewillneitherrisenorfallsothemarketisatacompetitiveequilibrium.CompetitiveMarketEquilibriumpQD,QS100CompetitiveMarketEquilibriumpQD,QSpe100CompetitiveMarketEquilibriumpQD,QSpe100Peoplewillingtopaypeforcloseapartmentsgetcloseapartments.CompetitiveMarketEquilibriumpQD,QSpe100Peoplewillingtopaypeforcloseapartmentsgetcloseapartments.Peoplenotwillingtopay
peforcloseapartments
getdistantapartments.CompetitiveMarketEquilibriumQ:Whorentsthecloseapartments?A:Thosemostwillingtopay.Q:Whorentsthedistantapartments?A:Thoseleastwillingtopay.Sothecompetitivemarketallocationisby“willingness-to-pay”.ComparativeStaticsWhatisexogenousinthemodel?priceofdistantapartmentsquantityofcloseapartmentsincomesofpotentialrenters.Whathappensiftheseexogenousvariableschange?ComparativeStaticsSupposethepriceofdistantapartmentrises.Demandforcloseapartmentsincreases(rightwardshift),causingahigherpriceforcloseapartments.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100HigherdemandMarketEquilibriumpQD,QSpe100Higherdemandcauseshigher
marketprice;samequantity
traded.ComparativeStaticsSupposethereweremorecloseapartments.Supplyisgreater,sothepriceforcloseapartmentsfalls.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QS100HighersupplypeMarketEquilibriumpQD,QSpe100Highersupplycausesa
lowermarketpriceanda
largerquantitytraded.ComparativeStaticsSupposepotentialrenters’incomesrise,increasingtheirwillingness-to-payforcloseapartments.Demandrises(upwardshift),causinghigherpriceforcloseapartments.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100Higherincomescause
higherwillingness-to-payMarketEquilibriumpQD,QSpe100Higherincomescause
higherwillingness-to-pay,
highermarketprice,and
thesamequantitytraded.
TaxationPolicyAnalysisLocalgovernmenttaxesapartmentowners.Whathappenstopricequantityofcloseapartmentsrented?Isanyofthetax“passed”torenters?TaxationPolicyAnalysisMarketsupplyisunaffected.Marketdemandisunaffected.Sothecompetitivemarketequilibriumisunaffectedbythetax.Priceandthequantityofcloseapartmentsrentedarenotchanged.Landlordspayallofthetax.ImperfectlyCompetitiveMarketsAmongstmanypossibilitiesare:amonopolisticlandlordaperfectlydiscriminatorymonopolisticlandlordacompetitivemarketsubjecttorentcontrol.AMonopolisticLandlordWhenthelandlordsetsarentalpricepherentsD(p)apartments.Revenue=pD(p).Revenueislowifp
0RevenueislowifpissohighthatD(p)0.Anintermediatevalueforpmaximizesrevenue.MonopolisticMarketEquilibriumpQDLow
priceLowprice,highquantity
demanded,lowrevenue.MonopolisticMarketEquilibriumpQDHigh
priceHighprice,lowquantity
demanded,lowrevenue.MonopolisticMarketEquilibriumpQDMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.MonopolisticMarketEquilibriumpQD,QSMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.
Monopolistdoesnotrentallthe
closeapartments.100MonopolisticMarketEquilibriumpQD,QSMiddle
priceMiddleprice,mediumquantity
demanded,largerrevenue.
Monopolistdoesnotrentallthe
closeapartments.100Vacantcloseapartments.PerfectlyDiscriminatoryMonopolisticLandlordImaginethemonopolistkneweveryone’swillingness-to-pay.Charge$500tothemostwilling-to-pay,charge$490tothe2ndmostwilling-to-pay,etc.DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$5001DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753DiscriminatoryMonopolisticMarketEquilibriumpQD,QS100p1=$500p2=$49012p3=$4753peDiscriminatorymonopolist
chargesthecompetitivemarket
pricetothelastrenter,and
rentsthecompetitivequantity
ofcloseapartments.RentControlLocalgovernmentimposesamaximumlegalprice,pmax<pe,thecompetitiveprice.MarketEquilibriumpQD,QSpe100MarketEquilibriumpQD,QSpe100pmaxMarketEquilibriumpQD,QSpe100pmaxExcessdemandMarketEquilibriumpQD,QSpe100pmaxExcessdemandThe100closeapartmentsarenolongerallocatedby
willingness-to-pay(lottery,lines,
largefamiliesfirst?).WhichMarketOutcomesAreDesirable?Whichisbetter?RentcontrolPerfectcompetitionMonopolyDiscriminatorymonopolyParetoEfficiencyVilfredoPareto;1848-1923.AParetooutcomeallowsno“wastedwelfare”;i.e.theonlywayoneperson’swelfarecanbeimprovedistoloweranotherperson’swelfare.ParetoEfficiencyJillhasanapartment;Jackdoesnot.Jillvaluestheapartmentat$200;Jackwouldpay$400forit.JillcouldsublettheapartmenttoJackfor$300.Bothgain,soitwasParetoinefficientforJilltohavetheapartment.ParetoEfficiencyAParetoinefficientoutcomemeansthereremainunrealizedmutualgains-to-trade.Anymarketoutcomethatachievesallpossiblegains-to-trademustbeParetoefficient.ParetoEfficiencyCompetitiveequilibrium:allcloseapartmentrentersvaluethematthemarketpricepeormoreallothersvaluecloseapartmentsatlessthanpesonomutuallybeneficialtradesremainsotheoutcomeisParetoefficient.ParetoEfficiencyDiscriminatoryMonopoly:assignmentofapartmentsisthesameaswiththeperfectlycompetitivemarketsothediscriminatorymonopolyoutcomeisalsoParetoefficient.ParetoEfficiencyMonopoly:notallapartmentsareoccupiedsoadistantapartmentrentercouldbeassignedacloseapartmentandhavehigherwelfarewithoutloweringanybodyelse’swelfare.sothemonopolyoutcomeisParetoinefficient.ParetoEfficiencyRentControl:somecloseapartmentsareassignedtorentersvaluingthematbelowthecompetitivepricepesomerentersvaluingacloseapartmentabovepedon’tgetcloseapartmentsParetoinefficientoutcome.HarderQuestionsOvertime,willthesupplyofcloseapartmentsincrease?rentcontroldecreasethesupplyofapartments?amonopolistsupplymoreapartmentsthanacompetitiverentalmarket?ChapterTwoBudgetaryandOtherConstraintsonChoiceConsumptionChoiceSetsAconsumptionchoicesetisthecollectionofallconsumptionchoicesavailabletotheconsumer.Whatconstrainsconsumptionchoice?Budgetary,timeandotherresourcelimitations.BudgetConstraintsAconsumptionbundlecontainingx1unitsofcommodity1,x2unitsofcommodity2andsoonuptoxnunitsofcommoditynisdenotedbythevector(x1,x2,…,xn).Commoditypricesarep1,p2,…,pn.BudgetConstraintsQ:Whenisaconsumptionbundle
(x1,…,xn)affordableatgivenpricesp1,…,pn?BudgetConstraintsQ:Whenisabundle(x1,…,xn)affordableatpricesp1,…,pn?A:When
p1x1+…+pnxn
£
m
wheremistheconsumer’s(disposable)income.BudgetConstraintsThebundlesthatareonlyjustaffordableformtheconsumer’sbudgetconstraint.Thisistheset
{(x1,…,xn)|x130,…,xn
30and
p1x1+…+pnxn
=
m}.
BudgetConstraintsTheconsumer’sbudgetsetisthesetofallaffordablebundles;
B(p1,…,pn,m)=
{(x1,…,xn)|x1
30,…,xn
30and
p1x1+…+pnxn
£
m}Thebudgetconstraintistheupperboundaryofthebudgetset.BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1m/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p2m/p1BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1Justaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1JustaffordableNotaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1AffordableJustaffordableNotaffordablem/p2BudgetSetandConstraintforTwoCommoditiesx2x1Budgetconstraintisp1x1+p2x2=m.m/p1BudgetSet
thecollection
ofallaffordablebundles.m/p2BudgetSetandConstraintforTwoCommoditiesx2x1p1x1+p2x2=misx2=-(p1/p2)x1+m/p2soslopeis-p1/p2.m/p1BudgetSetm/p2BudgetConstraintsIfn=3whatdothebudgetconstraintandthebudgetsetlooklike?BudgetConstraintforThreeCommoditiesx2x1x3m/p2m/p1m/p3p1x1+p2x2+p3x3=mBudgetSetforThreeCommoditiesx2x1x3m/p2m/p1m/p3{(x1,x2,x3)|x1
30,x230,x3
3
0andp1x1+p2x2+p3x3
£
m}BudgetConstraintsForn=2andx1onthehorizontalaxis,theconstraint’sslopeis-p1/p2.Whatdoesitmean?
BudgetConstraintsForn=2andx1onthehorizontalaxis,theconstraint’sslopeis-p1/p2.Whatdoesitmean?
Increasingx1by1mustreducex2byp1/p2.BudgetConstraintsx2x1Slopeis-p1/p2+1-p1/p2BudgetConstraintsx2x1+1-p1/p2Opp.costofanextraunitof
commodity1isp1/p2units
foregoneofcommodity2.BudgetConstraintsx2x1Opp.costofanextraunitof
commodity1isp1/p2units
foregoneofcommodity2.And
theopp.costofanextra
unitofcommodity2is
p2/p1unitsforegone
ofcommodity1.-p2/p1+1BudgetSets&Constraints;IncomeandPriceChangesThebudgetconstraintandbudgetsetdependuponpricesandincome.Whathappensaspricesorincomechange?Howdothebudgetsetandbudgetconstraintchangeasincomemincreases?Originalbudgetsetx2x1HigherincomegivesmorechoiceOriginalbudgetsetNewaffordableconsumption
choicesx2x1Originalandnewbudgetconstraintsareparallel(sameslope).Howdothebudgetsetandbudgetconstraintchangeasincomemdecreases?Originalbudgetsetx2x1Howdothebudgetsetandbudgetconstraintchangeasincomemdecreases?x2x1New,smallerbudgetsetConsumptionbundlesthatarenolongeraffordable.Oldandnewconstraintsareparallel.BudgetConstraints-IncomeChangesIncreasesinincomemshifttheconstraintoutwardinaparallelmanner,therebyenlargingthebudgetsetandimprovingchoice.BudgetConstraints-IncomeChangesIncreasesinincomemshifttheconstraintoutwardinaparallelmanner,therebyenlargingthebudgetsetandimprovingchoice.Decreasesinincomemshifttheconstraintinwardinaparallelmanner,therebyshrinkingthebudgetsetandreducingchoice.BudgetConstraints-IncomeChangesNooriginalchoiceislostandnewchoicesareaddedwhenincomeincreases,sohigherincomecannotmakeaconsumerworseoff.Anincomedecreasemay(typicallywill)maketheconsumerworseoff.BudgetConstraints-PriceChangesWhathappensifjustonepricedecreases?Supposep1decreases.Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”-p1’/p2Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”Newaffordablechoices-p1’/p2Howdothebudgetsetandbudgetconstraintchangeasp1
decreasesfromp1’top1”?Originalbudgetsetx2x1m/p2m/p1’m/p1”NewaffordablechoicesBudgetconstraintpivots;slopeflattensfrom-p1’/p2to-p1”/p2-p1’/p2-p1”/p2BudgetConstraints-PriceChangesReducingthepriceofonecommoditypivotstheconstraintoutward.Nooldchoiceislostandnewchoicesareadded,soreducingonepricecannotmaketheconsumerworseoff.BudgetConstraints-PriceChangesSimilarly,increasingonepricepivotstheconstraintinwards,reduceschoiceandmay(typicallywill)maketheconsumerworseoff.UniformAdValoremSalesTaxesAnadvaloremsalestaxleviedatarateof5%increasesallpricesby5%,frompto(1+0×05)p=1×05p.Anadvaloremsalestaxleviedatarateoftincreasesallpricesbytpfrompto(1+t)p.Auniformsalestaxisapplieduniformlytoallcommodities.UniformAdValoremSalesTaxesAuniformsalestaxleviedatratetchangestheconstraintfrom
p1x1+p2x2=m
to
(1+t)p1x1+(1+t)p2x2=mUniformAdValoremSalesTaxesAuniformsalestaxleviedatratetchangestheconstraintfrom
p1x1+p2x2=m
to
(1+t)p1x1+(1+t)p2x2=m
i.e.
p1x1+p2x2=m/(1+t).UniformAdValoremSalesTaxesx2x1p1x1+p2x2=mUniformAdValoremSalesTaxesx2x1p1x1+p2x2=mp1x1+p2x2=m/(1+t)UniformAdValoremSalesTaxesx2x1Equivalentincomeloss
isUniformAdValoremSalesTaxesx2x1Auniformadvalorem
salestaxleviedatratet
isequivalenttoanincome
taxleviedatrateTheFoodStampProgramFoodstampsarecouponsthatcanbelegallyexchangedonlyforfood.Howdoesacommodity-specificgiftsuchasafoodstampalterafamily’sbudgetconstraint?TheFoodStampProgramSupposem=$100,pF=$1andthepriceof“othergoods”ispG=$1.Thebudgetconstraintisthen
F+G=100.TheFoodStampProgramGF100100F+G=100;beforestamps.TheFoodStampProgramGF100100F+G=100:beforestamps.TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetsetafter40food
stampsissued.14040TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetsetafter40food
stampsissued.140Thefamily’sbudget
setisenlarged.40TheFoodStampProgramWhatiffoodstampscanbetradedonablackmarketfor$0.50each?TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetconstraintafter40
foodstampsissued.140120Budgetconstraintwith
blackmarkettrading.40TheFoodStampProgramGF100100F+G=100:beforestamps.Budgetconstraintafter40
foodstampsissued.140120Blackmarkettrading
makesthebudget
setlargeragain.40BudgetConstraints-RelativePrices“Numeraire”means“unitofaccount”.Supposepricesandincomearemeasuredindollars.Sayp1=$2,p2=$3,m=$12.Thentheconstraintis
2x1+3x2=12.BudgetConstraints-RelativePricesIfpricesandincomearemeasuredincents,thenp1=200,p2=300,m=1200andtheconstraintis
200x1+300x2=1200,
thesameas
2x1+3x2=12.Changingthenumerairechangesneitherthebudgetconstraintnorthebudgetset.BudgetConstraints-RelativePricesTheconstraintforp1=2,p2=3,m=12
2x1+3x2=12
isalso1.x1+(3/2)x2=6,
theconstraintforp1=1,p2=3/2,m=6.Settingp1=1makescommodity1thenumeraireanddefinesallpricesrelativetop1;e.g.3/2isthepriceofcommodity2relativetothepriceofcommodity1.BudgetConstraints-RelativePricesAnycommoditycanbechosenasthenumerairewithoutchangingthebudgetsetorthebudgetconstraint.BudgetConstraints-RelativePricesp1=2,p2=3andp3=6
priceofcommodity2relativetocommodity1is3/2,priceofcommodity3relativetocommodity1is3.Relativepricesaretheratesofexchangeofcommodities2and3forunitsofcommodity1.ShapesofBudgetConstraintsQ:Whatmakesabudgetconstraintastraightline?A:Astraightlinehasaconstantslopeandtheconstraintis
p1x1+…+pnxn=m
soifpricesareconstantsthenaconstraintisastraightline.ShapesofBudgetConstraintsButwhatifpricesarenotconstants?E.g.bulkbuyingdiscounts,orpricepenaltiesforbuying“toomuch”.Thenconstraintswillbecurved.ShapesofBudgetConstraints-QuantityDiscountsSupposep2isconstantat$1butthatp1=$2for0£x1
£20andp1=$1forx1>20.ShapesofBudgetConstraints-QuantityDiscountsSupposep2isconstantat$1butthatp1=$2for0£x1
£20andp1=$1forx1>20.Thentheconstraint’sslopeis
-2,for0£x1
£20
-p1/p2=
-1,forx1>20
andtheconstraintis{ShapesofBudgetConstraintswithaQuantityDiscountm=$1005010020Slope=-2/1=-2
(p1=2,p2=1)Slope=-1/1=-1
(p1=1,p2=1)80x2x1ShapesofBudgetConstraintswithaQuantityDiscountm=$1005010020Slope=-2/1=-2
(p1=2,p2=1)Slope=-1/1=-1
(p1=1,p2=1)80x2x1ShapesofBudgetConstraintswithaQuantityDiscountm=$100501002080x2x1BudgetSetBudgetConstraintShapesofBudgetConstraintswithaQuantityPenaltyx2x1BudgetSetBudgetConstraintShapesofBudgetConstraints-OnePriceNegativeCommodity1isstinkygarbage.Youarepaid$2perunittoacceptit;i.e.p1=-$2.p2=$1.Income,otherthanfromacceptingcommodity1,ism=$10.Thentheconstraintis
-2x1+x2=10orx2=2x1+10.ShapesofBudgetConstraints-OnePriceNegative10Budgetconstraint’sslopeis-p1/p2=-(-2)/1=+2x2x1x2=2x1+10ShapesofBudgetConstraints-OnePriceNegative10x2x1
Budgetsetis
allbundlesfor
whichx1
30,
x2
30andx2
£2x1+10.MoreGeneralChoiceSetsChoicesareusuallyconstrainedbymorethanabudget;e.g.timeconstraintsandotherresourcesconstraints.Abundleisavailableonlyifitmeetseveryconstraint.MoreGeneralChoiceSetsFoodOtherStuff10Atleast10unitsoffoodmustbeeatentosurviveMoreGeneralChoiceSetsFoodOtherStuff10BudgetSetChoiceisalsobudget
constrained.MoreGeneralChoiceSetsFoodOtherStuff10Choiceisfurtherrestrictedbyatimeconstraint.MoreGeneralChoiceSetsSowhatisthechoiceset?MoreGeneralChoiceSetsFoodOtherStuff10MoreGeneralChoiceSetsFoodOtherStuff10MoreGeneralChoiceSetsFoodOtherStuff10Thechoicesetistheintersectionofalloftheconstraintsets.ChapterThreePreferencesRationalityinEconomics
BehavioralPostulate:
Adecisionmakeralwayschoosesitsmostpreferredalternativefromitssetofavailablealternatives.Sotomodelchoicewemustmodeldecisionmakers’preferences.PreferenceRelationsComparingtwodifferentconsumptionbundles,xandy:strictpreference:xismorepreferredthanisy.weakpreference:xisasatleastaspreferredasisy.indifference:xisexactlyaspreferredasisy.PreferenceRelationsStrictpreference,weakpreferenceandindifferenceareallpreferencerelations.Particularly,theyareordinalrelations;i.e.theystateonlytheorderinwhichbundlesarepreferred.PreferenceRelations
denotesstrictpreference;
xymeansthatbundlexispreferredstrictlytobundley.ppPreferenceRelations
denotesstrictpreference;
xymeansbundlexispreferredstrictlytobundley.~denotesindifference;x~ymeansxandyareequallypreferred.ppPreferenceRelations
denotesstrictpreferenceso
xymeansthatbundlexispreferredstrictlytobundley.~denotesindifference;x~ymeansxandyareequallypreferred.denotesweakpreference;
xymeansxispreferredatleastasmuchasisy.
~f~fppPreferenceRelationsxyandyximplyx~y.~f~fPreferenceRelationsxyandyximplyx~y.xyand(notyx)implyxy.~f~f~f~fpAssumptionsaboutPreferenceRelationsCompleteness:Foranytwobundlesxandyitisalwayspossibletomakethestatementthateither
xy
or
yx.~f~fAssumptionsaboutPreferenceRelationsReflexivity:Anybundlexisalwaysatleastaspreferredasitself;i.e.
xx.~fAssumptionsaboutPreferenceRelationsTransitivity:If
xisatleastaspreferredasy,and
yisatleastaspreferredasz,then
xisatleastaspreferredasz;i.e.
xyandyzxz.~f~f~fIndifferenceCurvesTakeareferencebundlex’.Thesetofallbundlesequallypreferredtox’istheindifferencecurvecontainingx’;thesetofallbundlesy~x’.Sinceanindifference“curve”isnotalwaysacurveabetternamemightbeanindifference“set”.IndifferenceCurvesx2x1x”x”’x’~x”~x”’x’IndifferenceCurvesx2x1z
x
yppxyzIndifferenceCurvesx2x1xAllbundlesinI1arestrictlypreferredtoallinI2.yzAllbundlesinI2arestrictlypreferredto
allinI3.I1I2I3IndifferenceCurvesx2x1I(x’)xI(x)WP(x),thesetof
bundlesweaklypreferredtox.IndifferenceCurvesx2x1WP(x),thesetof
bundlesweaklypreferredtox.
WP(x)
includes
I(x).xI(x)IndifferenceCurvesx2x1SP(x),thesetof
bundlesstrictlypreferredtox,
doesnot
includeI(x).xI(x)IndifferenceCurvesCannotIntersect
x2x1xyzI1I2FromI1,x~y.FromI2,x~z.Thereforey~z.IndifferenceCurvesCannotIntersect
x2x1xyzI1I2FromI1,x~y.FromI2,x~z.Thereforey~z.ButfromI1andI2weseeyz,a
contradiction.pSlopesofIndifferenceCurvesWhenmoreofacommodityisalwayspreferred,thecommodityisagood.Ifeverycommodityisagoodthenindifferencecurvesarenegativelysloped.SlopesofIndifferenceCurvesBetterWorseGood2Good1Twogoods
anegativelyslopedindifferencecurve.SlopesofIndifferenceCurvesIflessofacommodityisalwayspreferredthenthecommodityisabad.SlopesofIndifferenceCurvesBetterWorseGood2Bad1Onegoodandone
badapositivelyslopedindifferencecurve.ExtremeCasesofIndifferenceCurves;PerfectSubstitutesIfaconsumeralwaysregardsunitsofcommodities1and2asequivalent,thenthecommoditiesareperfectsubstitutesandonlythetotalamountofthetwocommoditiesinbundlesdeterminestheirpreferencerank-order.ExtremeCasesofIndifferenceCurves;PerfectSubstitutesx2x1881515Slopesareconstantat-1.I2I1BundlesinI2allhaveatotal
of15unitsandarestrictlypreferredtoallbundlesin
I1,whichhaveatotalof
only8unitsinthem.ExtremeCasesofIndifferenceCurves;PerfectComplementsIfaconsumeralwaysconsumescommodities1and2infixedproportion(e.g.one-to-one),thenthecommoditiesareperfectcomplementsandonlythenumberofpairsofunitsofthetwocommoditiesdeterminesthepreferencerank-orderofbundles.ExtremeCasesofIndifferenceCurves;PerfectComplementsx2x1I145o5959Eachof(5,5),(5,9)and(9,5)contains
5pairssoeachisequallypreferred.
ExtremeCasesofIndifferenceCurves;PerfectComplementsx2x1I2I145o5959Sinceeachof(5,5),(5,9)and(9,5)contains5pairs,eachislesspreferredthanthebundle(9,9)
whichcontains9pairs.
PreferencesExhibitingSatiationAbundlestrictlypreferredtoanyotherisasatiationpointorablisspoint.Whatdoindifferencecurveslooklikeforpreferencesexhibitingsatiation?IndifferenceCurvesExhibitingSatiationx2x1Satiation
(bliss)
pointIndifferenceCurvesExhibitingSatiationx2x1BetterBetterBetterSatiation
(bliss)
pointIndifferenceCurvesExhibitingSatiationx2x1BetterBetterBetterSatiation
(bliss)
pointIndifferenceCurvesforDiscreteCommoditiesAcommodityisinfinitelydivisibleifitcanbeacquiredinanyquantity;e.g.waterorcheese.Acommodityisdiscreteifitcomesinunitlumpsof1,2,3,…andsoon;e.g.aircraft,shipsandrefrigerators.IndifferenceCurvesfo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能交通系統(tǒng)建設(shè)合同4篇
- 2025年度產(chǎn)品上樣研發(fā)創(chuàng)新合作框架協(xié)議4篇
- 二零二四年專業(yè)調(diào)解離婚財產(chǎn)分配協(xié)議3篇
- 2025年度廠房租賃合同補充協(xié)議(含租賃物保險及理賠)4篇
- 2025年度柴油產(chǎn)品售后服務(wù)協(xié)議3篇
- 女性職工知識培訓(xùn)課件
- 2024藝術(shù)品經(jīng)營公司與藝術(shù)家前期藝術(shù)品交易合同
- 不動產(chǎn)企業(yè)股權(quán)轉(zhuǎn)讓標(biāo)準(zhǔn)協(xié)議版B版
- 專業(yè)辦公設(shè)備配送及維護服務(wù)協(xié)議版A版
- 2024藥品、醫(yī)療器械質(zhì)量保證協(xié)議書
- 醫(yī)養(yǎng)康養(yǎng)園項目商業(yè)計劃書
- 《穿越迷宮》課件
- 《C語言從入門到精通》培訓(xùn)教程課件
- 2023年中國半導(dǎo)體行業(yè)薪酬及股權(quán)激勵白皮書
- 2024年Minitab全面培訓(xùn)教程
- 社區(qū)電動車棚新(擴)建及修建充電車棚施工方案(純方案-)
- 項目推進與成果交付情況總結(jié)與評估
- 鐵路項目征地拆遷工作體會課件
- 醫(yī)院死亡報告年終分析報告
- 建設(shè)用地報批服務(wù)投標(biāo)方案(技術(shù)方案)
- 工會工作人年度考核個人總結(jié)
評論
0/150
提交評論