上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊模擬試卷數(shù)學(xué)試題試卷(4)含解析_第1頁(yè)
上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊模擬試卷數(shù)學(xué)試題試卷(4)含解析_第2頁(yè)
上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊模擬試卷數(shù)學(xué)試題試卷(4)含解析_第3頁(yè)
上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊模擬試卷數(shù)學(xué)試題試卷(4)含解析_第4頁(yè)
上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊模擬試卷數(shù)學(xué)試題試卷(4)含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市金山區(qū)上海交大南洋中學(xué)2024-2025學(xué)年高三考前突擊精選模擬試卷數(shù)學(xué)試題試卷(4)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.2.已知復(fù)數(shù)滿足,則=()A. B.C. D.3.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.44.已知是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.5.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.46.“紋樣”是中國(guó)藝術(shù)寶庫(kù)的瑰寶,“火紋”是常見(jiàn)的一種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.7.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.在滿足,的實(shí)數(shù)對(duì)中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.99.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.10.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)11.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.12.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,輸出的值為_(kāi)_____.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_(kāi)____.15.如圖是九位評(píng)委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_(kāi)______.16.命題“”的否定是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.18.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.19.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點(diǎn)個(gè)數(shù).20.(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開(kāi)鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度;(2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,,,千米,千米,求應(yīng)開(kāi)鑿的隧道的長(zhǎng)度.21.(12分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.22.(10分)如圖,點(diǎn)是以為直徑的圓上異于、的一點(diǎn),直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點(diǎn)到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.2.B【解析】

利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.3.D【解析】

a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫(huà)出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.4.D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.5.B【解析】

因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?.D【解析】

直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7.B【解析】

由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.8.A【解析】

由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過(guò)導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因?yàn)椋瑒t,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因?yàn)?,,由題可知:時(shí),則,所以,所以,當(dāng)無(wú)限接近時(shí),滿足條件,所以,所以要使得故當(dāng)時(shí),可有,故,即,所以:最大值為5.故選:A.本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時(shí)考查轉(zhuǎn)化思想和解題能力.9.A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.10.C【解析】

畫(huà)出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.11.D【解析】

由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.12.C【解析】

直線過(guò)定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過(guò)定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.本題考查過(guò)定點(diǎn)的直線系問(wèn)題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.7【解析】

表示初值S=1,i=1,分三次循環(huán)計(jì)算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7本題考查在程序語(yǔ)句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問(wèn)題,屬于基礎(chǔ)題.14.【解析】

①根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強(qiáng).15.1【解析】

寫(xiě)出莖葉圖對(duì)應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.16.,【解析】

根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】

(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.18.(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫(xiě)出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時(shí),.本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問(wèn)題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.19.(1);(2)極小值;(3)函數(shù)的零點(diǎn)個(gè)數(shù)為.【解析】

(1)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時(shí),以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1)因?yàn)?,所以.所以,.所以曲線在點(diǎn)處的切線為;(2)因?yàn)椋?,得或.列表如下?極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時(shí),函數(shù)有極小值;(3)當(dāng)時(shí),,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點(diǎn)個(gè)數(shù)為.本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.20.(1)當(dāng)時(shí),公路的長(zhǎng)度最短為千米;(2)(千米).【解析】

(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長(zhǎng)度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù).所以當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,此時(shí).故當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問(wèn)題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計(jì)算能力.21.(1)16;(2)115.【解析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個(gè);當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿足的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論