省際名校2022年高考考前模擬數(shù)學試題含解析_第1頁
省際名校2022年高考考前模擬數(shù)學試題含解析_第2頁
省際名校2022年高考考前模擬數(shù)學試題含解析_第3頁
省際名校2022年高考考前模擬數(shù)學試題含解析_第4頁
省際名校2022年高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的漸近線方程為()A. B.C. D.2.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且3.以下關于的命題,正確的是A.函數(shù)在區(qū)間上單調遞增B.直線需是函數(shù)圖象的一條對稱軸C.點是函數(shù)圖象的一個對稱中心D.將函數(shù)圖象向左平移需個單位,可得到的圖象4.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.5.若復數(shù),則()A. B. C. D.206.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為7.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}8.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.9.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.10.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.11.設實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.412.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.15.已知平面向量、的夾角為,且,則的最大值是_____.16.從一箱產(chǎn)品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.18.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.19.(12分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.20.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.21.(12分)某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質量指標值,若該項質量指標值落在內的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產(chǎn)的樣本頻率分布直方圖表1:B設備生產(chǎn)的樣本頻數(shù)分布表質量指標值頻數(shù)2184814162(1)請估計A.B設備生產(chǎn)的產(chǎn)品質量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質量指標值落在內的定為一等品,每件利潤240元;質量指標值落在或內的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?22.(10分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設函數(shù)().①當時,求函數(shù)的極值;②若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點”,,且,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.2.D【解析】

首先把三視圖轉換為幾何體,根據(jù)三視圖的長度,進一步求出個各棱長.【詳解】根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.3.D【解析】

利用輔助角公式化簡函數(shù)得到,再逐項判斷正誤得到答案.【詳解】A選項,函數(shù)先增后減,錯誤B選項,不是函數(shù)對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數(shù)的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數(shù)性質的綜合應用,其中化簡三角函數(shù)是解題的關鍵.4.D【解析】

根據(jù)拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.5.B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數(shù)的運算,復數(shù)的模,意在考查學生的計算能力.6.C【解析】

根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.7.C【解析】

根據(jù)集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.8.A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解.9.A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質、向量垂直與數(shù)量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.10.B【解析】

構造函數(shù),利用導數(shù)研究函數(shù)的單調性,即可得到結論.【詳解】設,則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調性,根據(jù)函數(shù)的單調性解不等式,考查學生分析問題解決問題的能力,是難題.11.C【解析】

畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.12.C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角14.【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.15.【解析】

建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.16.0.35【解析】

根據(jù)對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明詳見解析,;(3).【解析】

(1)根據(jù)題意列出關于的等式求解即可.(2)先根據(jù)對稱性,直線過的定點一定在軸上,再設直線的方程為,聯(lián)立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據(jù)對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,聯(lián)立,消去得到,設點,則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點.當過點的直線的斜率不存在時,直線的方程為,此時,當過點的直線斜率存在時,設直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達定理以及所求的解析式,結合參數(shù)的范圍進行求解.屬于難題.18.(1)(2),的最小值為.(3)時,面積取最小值為【解析】

(1),利用三角函數(shù)定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數(shù)判斷函數(shù)的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調遞增,在上單調遞減,故當,即時,面積取最小值為【點睛】本題考查三角函數(shù)定義的應用,考查利用導函數(shù)求最值,考查運算能力.19.(1)證明見解析(2)存在,為中點【解析】

(1)證明面,即證明平面平面;(2)以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.利用向量方法得,解得,所以為中點.【詳解】(1)由于為中點,.又,故,所以為直角三角形且,即.又因為面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四邊形為矩形,則兩兩垂直.以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.則,設,則,設平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設平面與平面所成角為,則由題意可得,解得,所以點為中點.【點睛】本題主要考查空間幾何位置關系的證明,考查空間二面角的應用,意在考查學生對這些知識的理解掌握水平.20.(1);(2)【解析】

(1)直接利用轉換公式,把參數(shù)方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數(shù)求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數(shù)方程與極坐標方程的互化,三角函數(shù)的值域求解等知識,考查了學生的運算求解能力.21.(1)30.2,29;(2)B設備【解析】

(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標值落在內的產(chǎn)品才視為合格品,列出A、B設備利潤分布列,算出期望即可作出決策.【詳解】(1)A設備生產(chǎn)的樣本的頻數(shù)分布表如下質量指標值頻數(shù)41640121810.根據(jù)樣本質量指標平均值估計A設備生產(chǎn)一件產(chǎn)品質量指標平均值為30.2.B設備生產(chǎn)的樣本的頻數(shù)分布表如下質量指標值頻數(shù)2184814162根據(jù)樣本質量指標平均值估計B設備生產(chǎn)一件產(chǎn)品質量指標平均值為29.(2)A設備生產(chǎn)一件產(chǎn)品的利潤記為X,B設備生產(chǎn)一件產(chǎn)品的利潤記為Y,X240180120PY240180120P若以生產(chǎn)一件產(chǎn)品的利潤作為決策依據(jù),企業(yè)應加大B設備的生產(chǎn)規(guī)模.【點睛】本題考查平均數(shù)的估計值、離散隨機變量的期望,并利用期望作決策,是一個概率與統(tǒng)計綜合題,本題是一道中檔題.22.(1)①極小值為1,無極大值.②實數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論