山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題含解析_第1頁(yè)
山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題含解析_第2頁(yè)
山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題含解析_第3頁(yè)
山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題含解析_第4頁(yè)
山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省棗莊市薛城區(qū)第八中學(xué)2024-2025學(xué)年第二學(xué)期期末高三質(zhì)量檢測(cè)試題數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.2.已知集合,則()A. B.C. D.3.已知,則的值構(gòu)成的集合是()A. B. C. D.4.若集合,,則=()A. B. C. D.5.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.6.過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是().A. B. C. D.7.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β8.直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.9.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.210.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對(duì)稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④11.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.812.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),其中為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值是__.14.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.15.已知實(shí)數(shù)滿足(為虛數(shù)單位),則的值為_______.16.已知拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,直線與交于,兩點(diǎn),若,則實(shí)數(shù)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.19.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.20.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為求a,b的值;證明:.21.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).22.(10分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.2.B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.3.C【解析】

對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡(jiǎn)可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),,則的值構(gòu)成的集合為.本題考查三角式的化簡(jiǎn),誘導(dǎo)公式,分類討論,屬于基本題.4.C【解析】試題分析:化簡(jiǎn)集合故選C.考點(diǎn):集合的運(yùn)算.5.B【解析】

函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.6.A【解析】過圓外一點(diǎn),引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程為,故選.7.B【解析】

根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.8.D【解析】

根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到故答案為:D.求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).9.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10.D【解析】

因?yàn)?,所以①不正確;因?yàn)?,所以,,所以,所以函?shù)的圖象是軸對(duì)稱圖形,②正確;易知函數(shù)的最小正周期為,因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時(shí),,且,令,得,可知函數(shù)在處取得極大值為,③正確;因?yàn)?,所以,所以函?shù)的最小值為,④正確.故選D.11.D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.12.C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復(fù)數(shù)為純虛數(shù),所以,解得.故答案為:2本題主要考查純虛數(shù)定義的應(yīng)用,屬基礎(chǔ)題.14..【解析】

當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.15.【解析】

由虛數(shù)單位的性質(zhì)結(jié)合復(fù)數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查虛數(shù)單位的性質(zhì),屬于基礎(chǔ)題.16.【解析】

由于直線過拋物線的焦點(diǎn),因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對(duì)稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點(diǎn),,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因?yàn)?,所以.因?yàn)?,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對(duì)稱性還有滿足題意.,綜上,.本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)弦問題,掌握拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離與它到距離聯(lián)系起來是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析【解析】

(1)根據(jù),分別是,的中點(diǎn),即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點(diǎn)∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點(diǎn)∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),中檔題.18.(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】

(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;

(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時(shí),函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時(shí),函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域

為.

因?yàn)椋?,可得?/p>

當(dāng)時(shí),;當(dāng)時(shí),,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),

的最小值是當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時(shí),函數(shù)在上是增函數(shù),在上是減函數(shù).

又,

當(dāng)時(shí),的最小值是;

當(dāng)時(shí),的最小值為綜上所述,結(jié)論為當(dāng)時(shí),函數(shù)的最小值是;

當(dāng)時(shí),函數(shù)的最小值是.求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小19.(1)(2)證明見解析【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)椋?,所以要證,只需證,即證,因?yàn)?,所以只要證,即證,即證,因?yàn)?,所以只需證,因?yàn)?,所以成立,所?本小題主要考查絕對(duì)值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.20.(1);(2)見解析【解析】分析:第一問結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡(jiǎn)化運(yùn)算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設(shè)則只需證明,設(shè)則,在上單調(diào)遞增,,使得且當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞減當(dāng)時(shí),,單調(diào)遞增,由,得,,設(shè),,當(dāng)時(shí),,在單調(diào)遞減,,因此(方法二)先證當(dāng)時(shí),,即證設(shè),則,且,在單調(diào)遞增,在單調(diào)遞增,則當(dāng)時(shí),(也可直接分析顯然成立)再證設(shè),則,令,得且當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,即又,點(diǎn)睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的綜合問題,在求解的過程中,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,有關(guān)切線的問題,還有就是應(yīng)用導(dǎo)數(shù)證明不等式,可以構(gòu)造新函數(shù),轉(zhuǎn)化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.21.(1)(2)證明見解析【解析】

(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論